The Holonomy of Spherically Symmetric Projective Finsler Metrics of Constant Curvature

被引:0
作者
Asma, Mezrag [1 ]
Zoltan, Muzsnay [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 400, H-4002 Debrecen, Hungary
关键词
Finsler geometry; Holonomy; Curvature; Diffeomorphism groups; MANIFOLDS;
D O I
10.1007/s12220-024-01691-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the holonomy group of n-dimensional projective Finsler metrics of constant curvature. We establish that in the spherically symmetric case, the holonomy group is maximal, and for a simply connected manifold it is isomorphic to D i f f o ( S n - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}<^>{n-1})$$\end{document} , the connected component of the identity of the group of smooth diffeomorphism on the n - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n-1}$$\end{document} -dimensional sphere. In particular, the holonomy group of the n-dimensional standard Funk metric and the Bryant-Shen metrics are maximal and isomorphic to D i f f o ( S n - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}<^>{n-1})$$\end{document} . These results are the firsts describing explicitly the holonomy group of n-dimensional Finsler manifolds in the non-Berwaldian (that is when the canonical connection is non-linear) case.
引用
收藏
页数:15
相关论文
共 19 条
[1]  
BOREL A, 1952, CR HEBD ACAD SCI, V234, P1835
[2]  
Bryant R.L., 1995, Contemp. Math. Amer. Math. Soc, V196, P27
[3]  
Bryant RL., 1997, Selecta Math. (N.S.), V2, P161, DOI [10.1007/s000290050009, DOI 10.1007/S000290050009]
[4]  
Chern S.S., 2005, Riemann-Finsler Geometry
[5]   The geometric, in which the straight lines are tersest [J].
Funk, P .
MATHEMATISCHE ANNALEN, 1929, 101 :226-237
[6]  
Funk P., 1963, sterreich. Akad. Wiss. Math.-Natur. Kl. S.-B, VII, P251
[7]   Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory [J].
Hubicska, Balazs ;
Muzsnay, Zoltan .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) :107-123
[8]  
Kozma L., 1995, Contemp. Math. Amer. Math. Soc, V196, P177
[9]   Finsler 2-manifolds with maximal holonomy group of infinite dimension [J].
Muzsnay, Zoltan ;
Nagy, Peter T. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 39 :1-9
[10]   Projectively flat Finsler manifolds with infinite dimensional holonomy [J].
Muzsnay, Zoltan ;
Nagy, Peter T. .
FORUM MATHEMATICUM, 2015, 27 (02) :767-786