DUALITIES AND EQUIVALENCES OF THE CATEGORY OF RELATIVE COHEN-MACAULAY MODULES

被引:2
作者
Pourghobadian, Parisa [1 ]
Divaani-Aazar, Kamran [1 ]
Rahimi, Ahad [2 ]
机构
[1] Alzahra Univ, Dept Math, Tehran, Iran
[2] Razi Univ, Dept Math, Kermanshah, Iran
关键词
Auslander class; Bass class; big Cohen-Macaulay module; cohomological dimension; dualizing module; Foxby equivalence; Grothendieck's local duality; local cohomology; relative Cohen-Macaulay module; relative generalized Cohen-Macaulay module; relative system of parameters; semidualizing module; LOCAL COHOMOLOGY; ENDOMORPHISM-RINGS; DIMENSIONS;
D O I
10.1216/jca.2024.16.95
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the global analogues of some dualities and equivalences in local algebra by developing the theory of relative Cohen-Macaulay modules. Let R be a commutative Noetherian ring (not necessarily local) with identity, and let a be a proper ideal of R. The notions of a-relative dualizing modules and a-relative big Cohen-Macaulay modules are introduced. With the help of a-relative dualizing modules, we establish the global analogue of duality on the subcategory of Cohen-Macaulay modules in local algebra. Lastly, we investigate the behavior of the subcategory of a-relative Cohen-Macaulay modules and a-relative generalized Cohen-Macaulay modules under Foxby equivalence.
引用
收藏
页码:95 / 113
页数:19
相关论文
共 25 条
[1]   The finiteness dimension of local cohomology modules and its dual notion [J].
Asgharzadeh, Mohsen ;
Divaani-Aazar, Kaman ;
Tousi, Massoud .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (03) :321-328
[2]   HOMOLOGICAL DIMENSIONS OF UNBOUNDED COMPLEXES [J].
AVRAMOV, LL ;
FOXBY, HB .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 71 (2-3) :129-155
[3]   On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence [J].
Beigi, Kosar Abolfath ;
Divaani-Aazar, Kamran .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) :989-1002
[4]  
Brodmann M.P., 2013, Local Cohomology: An Algebraic Introduction with Geometric Applications, VSecond
[5]  
Bruns W., 1993, Cohen-Macaulay rings, V8
[6]  
Celikbas O, 2017, NEW YORK J MATH, V23, P1697
[7]  
Christensen L.W., 2000, Gorenstein dimensions, V1747
[8]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[9]   Modules whose finiteness dimensions coincide with their cohomological dimensions [J].
Divaani-Aazar, Kamran ;
Doust, Akram Ghanbari ;
Tousi, Massoud ;
Zakeri, Hossein .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (04)
[10]   Cohomological dimension and relative Cohen-Maculayness [J].
Divaani-Aazar, Kamran ;
Doust, Akram Ghanbari ;
Tousi, Massoud ;
Zakeri, Hossein .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) :5417-5427