ASYMPTOTIC BEHAVIOUR FOR PRODUCTS OF CONSECUTIVE PARTIAL QUOTIENTS IN CONTINUED FRACTIONS

被引:1
作者
Chen, Xiao [1 ]
Fang, Lulu [1 ]
Li, Junjie [1 ]
Shang, Lei [2 ]
Zeng, Xin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
[2] Nanjing Agr Univ, Coll Sci, Nanjing 210095, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
continued fractions; product of consecutive partial quotients; residual sets; Hausdorff dimension; HAUSDORFF MEASURE; SETS;
D O I
10.1017/S000497272400025X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of an irrational number $x\in [0,1)$ . We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $x\in [0,1)$ , $$ \begin{align*} \liminf_{n \to \infty} \frac{\log (a_n(x)a_{n+1}(x))}{\log n} = 0\quad \text{and}\quad \limsup_{n \to \infty} \frac{\log (a_n(x)a_{n+1}(x))}{\log n}=1. \end{align*} $$We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.
引用
收藏
页码:448 / 459
页数:12
相关论文
共 24 条
[1]  
Bakhtawar A, 2023, HOUSTON J MATH, V49, P159
[2]   HAUSDORFF DIMENSION FOR THE SET OF POINTS CONNECTED WITH THE GENERALIZED JARNiK-BESICOVITCH SET [J].
Bakhtawar, Ayreena .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 112 (01) :1-29
[3]   The sets of Dirichlet non-improvable numbers versus well-approximable numbers [J].
Bakhtawar, Ayreena ;
Bos, Philip ;
Hussain, Mumtaz .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (12) :3217-3235
[4]   Hausdorff dimension of an exceptional set in the theory of continued fractions* [J].
Bakhtawar, Ayreena ;
Bos, Philip ;
Hussain, Mumtaz .
NONLINEARITY, 2020, 33 (06) :2615-2639
[5]   THE GENERALISED HAUSDORFF MEASURE OF SETS OF DIRICHLET NON-IMPROVABLE NUMBERS [J].
Bos, Philip ;
Hussain, Mumtaz ;
Simmons, David .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (05) :1823-1838
[6]   A note on the relative growth of products of multiple partial quotients in the plane [J].
Brown-Sarre, Adam ;
Hussain, Mumtaz .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (02) :544-552
[7]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[8]   Baire category and the relative growth rate for partial quotients in continued fractions [J].
Chang, Xinyi ;
Dong, Yihan ;
Liu, Mengchen ;
Shang, Lei .
ARCHIV DER MATHEMATIK, 2024, 122 (01) :41-46
[9]  
Falconer Kenneth., 1990, Fractal geometry: Mathematical foundations and applications
[10]   Sets of Dirichlet non-improvable numbers with certain order in the theory of continued fractions [J].
Feng, Jing ;
Xu, Jian .
NONLINEARITY, 2021, 34 (03) :1598-1611