An efficient deep learning-based approach for human activity recognition using smartphone inertial sensors

被引:2
|
作者
Djemili R. [1 ]
Zamouche M. [1 ]
机构
[1] LRES Lab., Université 20 Août 1955, Skikda
关键词
convolutional neural network (CNN); deep learnin; eatures; handcrafted features; Human activity recognition (HAR); inertial signals; smartphone accelerometers;
D O I
10.1080/1206212X.2023.2198785
中图分类号
学科分类号
摘要
Human activity recognition (HAR) has recently witnessed outstanding growth in health and entertainment applications. Owing to the availability of smartphones, many new methods and protocols for using the data from smartphones’ embedded sensors are emerging. Nonetheless, the methods carried out and published in the literature leave a wide area for improvement, in terms of accuracy, resource economy, and adaptation to real-world nuisances. On top of that, a novel classification method that is more economical and efficient is proposed in this paper using both 1D convolutional neural network (1D-CNN) parameters and handcrafted temporal and frequency features with the proficiency of a multilayer perceptron neural network (MLP) classifier. The method proposed requires only tri-axial accelerometer data, allowing it to be deployed even into lower equipment devices; it was tested within the two well-known benchmark datasets: UCI-HAR and Uni-MIB SHAR. Experimental results yield a classification accuracy exceeding 99%, outperforming many of the methods recently shown in the literature. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
引用
收藏
页码:323 / 336
页数:13
相关论文
共 50 条
  • [1] Human Activity Recognition with Inertial Sensors using a Deep Learning Approach
    Zebin, Tahmina
    Scully, Patricia J.
    Ozanyan, Krikor B.
    2016 IEEE SENSORS, 2016,
  • [2] Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview
    Lima, Wesllen Sousa
    Souto, Eduardo
    El-Khatib, Khalil
    Jalali, Roozbeh
    Gama, Joao
    SENSORS, 2019, 19 (14)
  • [3] EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications
    Mukherjee, Debadyuti
    Mondal, Riktim
    Singh, Pawan Kumar
    Sarkar, Ram
    Bhattacharjee, Debotosh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 31663 - 31690
  • [4] EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications
    Debadyuti Mukherjee
    Riktim Mondal
    Pawan Kumar Singh
    Ram Sarkar
    Debotosh Bhattacharjee
    Multimedia Tools and Applications, 2020, 79 : 31663 - 31690
  • [5] Human Activity Recognition through Smartphone Inertial Sensors with ML Approach
    Alanazi, Munid
    Aldahr, Raghdah Saem
    Ilyas, Mohammad
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12780 - 12787
  • [6] Sports activity recognition with UWB and inertial sensors using deep learning approach
    Pajak, Iwona
    Krutz, Pascal
    Patalas-Maliszewska, Justyna
    Rehm, Matthias
    Pajak, Grezgorz
    Schlegel, Holger
    Dix, Martin
    2022 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2022,
  • [7] Smartphone Location Recognition: A Deep Learning-Based Approach
    Klein, Itzik
    SENSORS, 2020, 20 (01)
  • [8] HDL: Hierarchical Deep Learning Model based Human Activity Recognition using Smartphone Sensors
    Su, Tongtong
    Sun, Huazhi
    Ma, Chunmei
    Jiang, Lifen
    Xu, Tongtong
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Human activity recognition with smartphone sensors using deep learning neural networks
    Ronao, Charissa Ann
    Cho, Sung-Bae
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 235 - 244
  • [10] A robust human activity recognition system using smartphone sensors and deep learning
    Hassan, Mohammed Mehedi
    Uddin, Md. Zia
    Mohamed, Amr
    Almogren, Ahmad
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 81 : 307 - 313