Ensemble Learning Approach for Short-term Energy Consumption Prediction

被引:1
作者
Reddy, Sujan A. [1 ]
Akashdeep, S. [1 ]
Harshvardhan, R. [1 ]
Kamath, Sowmya S. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Informat Technol, Surathkal, Karnataka, India
来源
PROCEEDINGS OF THE 5TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA, CODS COMAD 2022 | 2022年
关键词
Energy forecasting; Machine learning; Ensemble learning; Predictive analytics;
D O I
10.1145/3493700.3493743
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting electricity consumption accurately is crucial for garnering insights and potential trends into energy consumption for effective resource management. Due to the linearity/non-linearity in usage patterns, electricity consumption prediction is challenging and cannot be adequately solved by using a single model. In this paper, we propose ensemble learning based approaches for short-term electricity consumption on an open dataset. The ensemble model is built on the combined predictions of supervised machine learning and deep learning base models. Experimental validation showed that the proposed ensemble model is more accurate and decreases the training time of the second layer of the ensemble by a factor close to ten, compared to the state-of-the-art. We observed a reduction of approximately 34% in the Root mean squared error for the same size of historical window.
引用
收藏
页码:284 / 285
页数:2
相关论文
共 50 条
  • [1] Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model
    Khairalla, Mergani A.
    Ning, Xu
    Al-Jallad, Nashat T.
    El-Faroug, Musaab O.
    ENERGIES, 2018, 11 (06)
  • [2] Stacking Deep learning and Machine learning models for short-term energy consumption forecasting
    Reddy, A. Sujan
    Akashdeep, S.
    Harshvardhan, R.
    Kamath, S. Sowmya
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [3] A Short-Term Data Based Water Consumption Prediction Approach
    Benitez, Rafael
    Ortiz-Caraballo, Carmen
    Carlos Preciado, Juan
    Conejero, Jose M.
    Sanchez Figueroa, Fernando
    Rubio-Largo, Alvaro
    ENERGIES, 2019, 12 (12)
  • [4] Short-term rockburst risk prediction using ensemble learning methods
    Liang, Weizhang
    Sari, Asli
    Zhao, Guoyan
    McKinnon, Stephen D.
    Wu, Hao
    NATURAL HAZARDS, 2020, 104 (02) : 1923 - 1946
  • [5] Short-term rockburst risk prediction using ensemble learning methods
    Weizhang Liang
    Asli Sari
    Guoyan Zhao
    Stephen D. McKinnon
    Hao Wu
    Natural Hazards, 2020, 104 : 1923 - 1946
  • [6] A Novel Deep Stacking-Based Ensemble Approach for Short-Term Traffic Speed Prediction
    Awan, Anees Ahmed
    Majid, Abdul
    Riaz, Rabia
    Rizvi, Sanam Shahla
    Kwon, Se Jin
    IEEE ACCESS, 2024, 12 : 15222 - 15235
  • [7] Short-term traffic volume prediction by ensemble learning in concept drifting environments
    Xiao, Jianhua
    Xiao, Zhu
    Wang, Dong
    Bai, Jing
    Havyarimana, Vincent
    Zeng, Fanzi
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 213 - 225
  • [8] Short-term Wind Speed Prediction with Ensemble Algorithm
    Long, Yitao
    Zhang, Runfeng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6192 - 6196
  • [9] Short-Term Speed Prediction on Urban Highways by Ensemble Learning with Feature Subset Selection
    Rasyidi, Mohammad Arif
    Ryu, Kwang Ryel
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 46 - 60
  • [10] Short-Term Wind Power Prediction Based on a Modified Stacking Ensemble Learning Algorithm
    Yang, Yankun
    Li, Yuling
    Cheng, Lin
    Yang, Shiyou
    SUSTAINABILITY, 2024, 16 (14)