Transcriptome analysis of Sesuvium portulacastrum L. uncovers key genes and pathways involved in root formation in response to low-temperature stress

被引:2
|
作者
Yang, Jingyi [1 ]
Lin, Shiyu [1 ]
Shen, Yinghan [1 ]
Ye, Jingtao [1 ]
Jiang, Xiamin [1 ]
Li, Sheng [2 ]
Jiang, Maowang [1 ]
机构
[1] Ningbo Univ, Minist Agr & Rural Affairs, Sch Marine Sci, Key Lab Green Mariculture, 818 Fenghua Rd, Ningbo 315832, Zhejiang, Peoples R China
[2] Xiangshan Laifa Aquaculture Hatchery Facil, Ningbo 315704, Peoples R China
关键词
Sesuvium portulacastrum L; Rooting; Cold stress; Co-expression network; Transcriptome; METABOLISM; EXPRESSION; STARCH; PLANT; IDENTIFICATION; ACCUMULATION; FIXATION; GROWTH;
D O I
10.1007/s11103-024-01482-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sesuvium portulacastrum L., a perennial facultative halophyte, is extensively distributed across tropical and subtropical coastal regions. Its limited cold tolerance significantly impacts both the productivity and the geographical distribution of this species in higher-latitude areas. In this study, we employed RNA-Seq technology to delineate the transcriptomic alterations in Sesuvium plants exposed to low temperatures, thus advancing our comprehension of the molecular underpinnings of this physiological adaptation and root formation. Our findings demonstrated differential expression of 10,805, 16,389, and 10,503 genes in the low versus moderate temperature (LT vs. MT), moderate versus high temperature (MT vs. HT), and low versus high temperature (LT vs. HT) comparative analyses, respectively. Notably, the gene categories "structural molecule activity", "ribosome biogenesis", and "ribosome" were particularly enriched among the LT vs. HT-specific differentially expressed genes (DEGs). When synthesizing the insights from these three comparative studies, the principal pathways associated with the cold response mechanism were identified as "carbon fixation in photosynthetic organisms", "starch and sucrose metabolism", "plant hormone signal transduction", "glycolysis/gluconeogenesis", and "photosynthesis". In addition, we elucidated the involvement of auxin signaling pathways, adventitious root formation (ARF), lateral root formation (LRF), and novel genes associated with shoot system development in root formation. Subsequently, we constructed a network diagram to investigate the interplay between hormone levels and pivotal genes, thereby clarifying the regulatory pathways of plant root formation under low-temperature stress and isolating key genes instrumental in root development. This study has provided critical insights into the molecular mechanisms that facilitate the adaptation to cold stress and root formation in S. portulacastrum.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Root transcriptome analysis of Saccharum spontaneum uncovers key genes and pathways in response to low-temperature stress
    Dharshini, S.
    Hoang, Nam V.
    Mahadevaiah, C.
    Padmanabhan, T. S. Sarath
    Alagarasan, G.
    Suresha, G. S.
    Kumar, Ravinder
    Meena, Mintu Ram
    Ram, Bakshi
    Appunu, C.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 171
  • [2] Physiological response and tolerance of Sesuvium portulacastrum L. to low temperature stress
    Ye, Jingtao
    Yang, Jingyi
    Zheng, Rou
    Yu, Jiawen
    Jiang, Xiamin
    Li, Sheng
    Jiang, Maowang
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2024, 30 (02) : 269 - 285
  • [3] Physiological response and tolerance of Sesuvium portulacastrum L. to low temperature stress
    Jingtao Ye
    Jingyi Yang
    Rou Zheng
    Jiawen Yu
    Xiamin Jiang
    Sheng Li
    Maowang Jiang
    Physiology and Molecular Biology of Plants, 2024, 30 : 269 - 285
  • [4] Kidney transcriptome analysis of tiger puffer (Takifugu rubripes) uncovers key pathways and genes in response to low-temperature stress
    Liu, Zhifeng
    Ma, Aijun
    Yuan, Chenhao
    Zhu, Liguang
    Chang, Haowen
    Yu, Lanliang
    Meng, Xuesong
    AQUACULTURE REPORTS, 2022, 26
  • [5] 1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L.
    Liu, Wei
    Liu, Jinlin
    Zhang, Meijing
    Zhang, Jianlin
    Sun, Bin
    He, Chiquan
    He, Peimin
    Zhang, Wentao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 219
  • [6] Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress
    Liu, Renjian
    Shu, Bingbing
    Wang, Yuyuan
    Yu, Bingwei
    Wang, Yixi
    Gan, Yuwei
    Liang, Yonggui
    Qiu, Zhengkun
    Yang, Jianguo
    Yan, Shuangshuang
    Cao, Bihao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 211
  • [7] Transcriptome Analysis Reveals Key Genes Involved in Trichome Formation in Pepper (Capsicum annuum L.)
    Shen, Yiyu
    Mao, Lianzhen
    Zhou, Yao
    Sun, Ying
    Lv, Junheng
    Deng, Minghua
    Liu, Zhoubin
    Yang, Bozhi
    PLANTS-BASEL, 2024, 13 (08):
  • [8] Leaf Transcriptome Analysis of Broomcorn Millet Uncovers Key Genes and Pathways in Response to Sporisorium destruens
    Jin, Fei
    Liu, Jiajia
    Wu, Enguo
    Yang, Pu
    Gao, Jinfeng
    Gao, Xiaoli
    Feng, Baili
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [9] Comparative transcriptome analysis reveals the key genes and pathways involved in drought stress response of two wheat (Triticum aestivum L) varieties
    Niu, Yufei
    Li, Jingyu
    Sun, Fanting
    Song, Taiyu
    Han, Baojia
    Liu, Zijie
    Su, Peisen
    GENOMICS, 2023, 115 (05)
  • [10] De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.)
    Suresh, Bonthala Venkata
    Choudhary, Pooja
    Aggarwal, Pooja Rani
    Rana, Sumi
    Singh, Roshan Kumar
    Ravikesavan, Rajasekaran
    Prasad, Manoj
    Muthamilarasan, Mehanathan
    GENOMICS, 2022, 114 (03)