Acoustic shock wave-induced phase transition in indium selenide: tuning band gap energy for solar cell applications

被引:8
作者
Oviya, S. [1 ]
Bincy, F. Irine Maria [1 ]
Arumugam, S. [2 ]
Bharathi, K. Kamala [3 ]
Kumar, Raju Suresh [4 ]
Kannappan, P. [1 ]
Kim, Ikhyun [5 ]
Dhas, S. A. Martin Britto [1 ,5 ]
机构
[1] Sacred Heart Coll, Abdul Kalam Res Ctr, Dept Phys, Shock Wave Res Lab, Tirupattur 635601, Tamil Nadu, India
[2] Bharathidasan Univ, Ctr High Pressure Res, Sch Phys, Tiruchirapalli 620024, India
[3] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, Tamil Nadu, India
[4] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[5] Keimyung Univ, Dept Mech Engn, Daegu 42601, South Korea
基金
新加坡国家研究基金会;
关键词
GROWTH-CONDITIONS; PRESSURE; IN4SE3; TRANSFORMATION; ALPHA-IN2SE3; DYNAMICS; FILMS; INSE;
D O I
10.1039/d4ce00012a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Indium selenide is a semiconducting material that has a layer-by-layer crystal structure. The present work treats indium selenide with dynamic shock waves using a semi-automatic Reddy tube at 100, 200, 300, and 400 shock pulses. The mixed phase of In4Se3 and alpha-In2Se3 switched to pure rhombohedral (alpha-In2Se3) at 100 shock pulses and remained in the same phase up to 400 shock pulses due to application of 2.0 MPa pressure and temperature of 864 K. The crystal structure transformation from orthorhombic to rhombohedral was examined using powder X-ray diffraction and Raman scattering analyses, through the formation and disappearance of peaks, the results from XRD and Raman confirm the phase transition. The morphology and optical properties of the material were investigated using scanning electron microscopy and UV-DRS. The morphology of In2Se3 is of layered shape during increasing shocks. Optical analysis revealed that the band gap of the sample increased, changing from a wide to a narrow band gap semiconducting material. Acoustic shock wave loading experiment on indium selenide.
引用
收藏
页码:2498 / 2509
页数:12
相关论文
共 67 条
[1]  
Bercha DM, 1999, PHYS STATUS SOLIDI B, V212, P247, DOI 10.1002/(SICI)1521-3951(199904)212:2<247::AID-PSSB247>3.0.CO
[2]  
2-N
[3]   Lattice dynamics of crystalline In4Se3 [J].
Bercha, DM ;
Rushchanskii, KZ .
PHYSICS OF THE SOLID STATE, 1998, 40 (11) :1906-1910
[4]   Large-area optoelectronic-grade InSe thin films via controlled phase evolution [J].
Bergeron, Hadallia ;
Guiney, Linda M. ;
Beck, Megan E. ;
Zhang, Chi ;
Sangwan, Vinod K. ;
Torres-Castanedo, Carlos G. ;
Gish, J. Tyler ;
Rao, Rahul ;
Austin, Drake R. ;
Guo, Silu ;
Lam, David ;
Su, Katherine ;
Brown, Paul T. ;
Glavin, Nicholas R. ;
Maruyama, Benji ;
Bedzyk, Michael J. ;
Dravid, Vinayak P. ;
Hersam, Mark C. .
APPLIED PHYSICS REVIEWS, 2020, 7 (04)
[5]   Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films [J].
Britnell, L. ;
Ribeiro, R. M. ;
Eckmann, A. ;
Jalil, R. ;
Belle, B. D. ;
Mishchenko, A. ;
Kim, Y. -J. ;
Gorbachev, R. V. ;
Georgiou, T. ;
Morozov, S. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Casiraghi, C. ;
Castro Neto, A. H. ;
Novoselov, K. S. .
SCIENCE, 2013, 340 (6138) :1311-1314
[6]   Facile synthesis of ultra-small Bi2Te3 nanoparticles, nanorods and nanoplates and their morphology-dependent Raman spectroscopy [J].
Chen, Liangliang ;
Zhao, Qing ;
Ruan, Xiulin .
MATERIALS LETTERS, 2012, 82 :112-115
[7]   A Dual-Band Multilayer InSe Self-Powered Photodetector with High Performance Induced by Surface Plasmon Resonance and Asymmetric Schottky Junction [J].
Dai, Mingjin ;
Chen, Hongyu ;
Feng, Rui ;
Feng, Wei ;
Hu, Yunxia ;
Yang, Huihui ;
Liu, Guangbo ;
Chen, Xiaoshuang ;
Zhang, Jia ;
Xu, Cheng-Yan ;
Hu, PingAn .
ACS NANO, 2018, 12 (08) :8739-8747
[8]  
Dai Y., 2022, FRONT MATER, V8, P1
[9]   Structural and electrical properties of In6Se7 thin films [J].
El-Deeb, A. F. ;
Metwally, H. S. ;
Shehata, H. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (12)
[10]   GROWTH-CONDITIONS OF INXSEY FILMS BY MOLECULAR-BEAM DEPOSITION [J].
EMERY, JY ;
BRAHIMOTSMANE, L ;
JOUANNE, M ;
JULIEN, C ;
BALKANSKI, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1989, 3 (1-2) :13-17