Automatic Extraction and Decryption of Abbreviations from Domain-Specific Texts

被引:2
作者
Egorov, Michil [1 ]
Funkner, Anastasia [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
来源
PHEALTH 2021 | 2021年 / 285卷
基金
俄罗斯科学基金会;
关键词
Clinical text; medical records; natural language processing; abbreviations;
D O I
10.3233/SHTI210615
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This paper explores the problems of extraction and decryption of abbreviations from domain-specific texts in Russian. The main focus are unstructured electronic medical records which pose specific preprocessing problems. The major challenge is that there is no uniform way to write medical histories. The aim of the paper is to generalize the way of decrypting abbreviations from any variant of text. A dataset of nearly three million medical records was collected. A classifier model was trained in order to extract and decrypt abbreviations. After testing the proposed method with 224,307 records, the model showed an F1 score of 93.7% on a valid dataset.
引用
收藏
页码:281 / 284
页数:4
相关论文
共 50 条
[11]   Learning Domain-Specific Polarity Lexicons [J].
Demiroz, Gulsen ;
Yanikoglu, Berrin ;
Tapucu, Dilek ;
Saygin, Yucel .
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, :674-679
[12]   Extracting Meronymy Relationships from Domain-Specific, Textual Corporate Databases [J].
Ittoo, Ashwin ;
Bouma, Gosse ;
Maruster, Laura ;
Wortmann, Hans .
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2010, 6177 :48-59
[13]   Constructing automatic domain-specific sentiment lexicon using KNN search via terms discrimination vectors [J].
Alqasemi F. ;
Abdelwahab A. ;
Abdelkader H. .
International Journal of Computers and Applications, 2019, 41 (02) :127-137
[14]   Automatic information extraction from texts with inference and linguistic knowledge acquisition rules [J].
de Araujo, Denis A. ;
Rigo, Sandro J. ;
Muller, Carolina ;
Chishman, Rove .
2013 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY - WORKSHOPS (WI-IAT), VOL 3, 2013, :151-154
[15]   An Approach of Automatic Extraction of Domain Keywords from the Kazakh Text [J].
Alimzhanov, Yermek ;
Mansurova, Madina .
COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2016, PT II, 2016, 9876 :555-562
[16]   Semi-supervised Learning of Action Ontology from Domain-Specific Corpora [J].
Markievicz, Irena ;
Vitkute-Adzgauskiene, Daiva ;
Tamosiunaite, Minija .
INFORMATION AND SOFTWARE TECHNOLOGIES (ICIST 2013), 2013, 403 :173-185
[17]   Method for Creating Domain-Specific Dataset Ontologies from Text in Uncontrolled English [J].
Minab, Shokoufeh Salem ;
Nazaruka, Erika .
APPLIED COMPUTER SYSTEMS, 2025, 30 (01) :1-11
[18]   Inferring Multilingual Domain-Specific Word Embeddings From Large Document Corpora [J].
Cagliero, Luca ;
La Quatra, Moreno .
IEEE ACCESS, 2021, 9 :137309-137321
[19]   Automatic Extraction of Abbreviation Definitions Based on General Texts [J].
Zhou, Zhihua ;
Chen, Guang .
2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, :853-857
[20]   MAANA: An Automated Tool for DoMAin-specific HANdling of Ambiguity [J].
Ezzini, Saad ;
Abualhaija, Sallam ;
Arora, Chetan ;
Sabetzadeh, Mehrdad ;
Briand, Lionel .
2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, :188-189