Polynomial algorithms for sparse spanners on subcubic graphs

被引:0
作者
Gomez, R. [1 ]
Miyazawa, F. K. [2 ]
Wakababayashi, Y. [3 ]
机构
[1] Univ Fed ABC, Ctr Matemat Comput & Cognicao, Santo Andre, Brazil
[2] Univ Estadual Campinas, Inst Comput, Campinas, Brazil
[3] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
关键词
Spanner; Tree spanner; Subcubic graph; Polyhedra; TREE SPANNERS; UNWEIGHTED GRAPHS; EFFICIENCY; HARDNESS;
D O I
10.1007/s10878-024-01197-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G be a connected graph and t >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 1$$\end{document} a (rational) constant. A t-spanner of G is a spanning subgraph of G in which the distance between any pair of vertices is at most t times its distance in G. We address two problems on spanners. The first one, known as the minimumt-spanner problem (MinSt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_t$$\end{document}), seeks in a connected graph a t-spanner with the smallest possible number of edges. In the second one, called minimum cost treet-spanner problem (MCTSt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_t$$\end{document}), the input graph has costs assigned to its edges and seeks a t-spanner that is a tree with minimum cost. It is an optimization version of the treet-spanner problem (TreeSt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_t$$\end{document}), a decision problem concerning the existence of a t-spanner that is a tree. MinSt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_t$$\end{document} is known to be NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {NP}}$$\end{document}-hard for every t >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 2$$\end{document}. On the other hand, TreeSt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_t$$\end{document} admits a polynomial-time algorithm for t <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le 2$$\end{document} and is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsc {NP}}$$\end{document}-complete for t >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \ge 4$$\end{document}; but its complexity for t=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=3$$\end{document} remains open. We focus on the class of subcubic graphs. First, we show that for such graphs MinS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} can be solved in polynomial time. These results yield a practical polynomial algorithm for TreeS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} that is of a combinatorial nature. We also show that MCTS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} can be solved in polynomial time. To obtain this last result, we prove a complete linear characterization of the polytope defined by the incidence vectors of the tree 2-spanners of a subcubic graph. A recent result showing that MinS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} on graphs with maximum degree at most 5 is NP-hard, together with the current result on subcubic graphs, leaves open only the complexity of MinS3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_3$$\end{document} on graphs with maximum degree 4.
引用
收藏
页数:21
相关论文
共 30 条
[1]   Graph spanners: A tutorial review [J].
Ahmed, Reyan ;
Bodwin, Greg ;
Sahneh, Faryad Darabi ;
Hamm, Keaton ;
Jebelli, Mohammad Javad Latifi ;
Kobourov, Stephen ;
Spence, Richard .
COMPUTER SCIENCE REVIEW, 2020, 37
[2]   Approximation Algorithms and an Integer Program for Multi-level Graph Spanners [J].
Ahmed, Reyan ;
Hamm, Keaton ;
Jebelli, Mohammad Javad Latifi ;
Kobourov, Stephen ;
Sahneh, Faryad Darabi ;
Spence, Richard .
ANALYSIS OF EXPERIMENTAL ALGORITHMS, SEA2 2019, 2019, 11544 :541-562
[3]  
Alvarez-Miranda E, 2019, OPTIM LETT, V13, P1693, DOI 10.1007/s11590-018-1340-0
[4]   COMPLEXITY OF NETWORK SYNCHRONIZATION [J].
AWERBUCH, B .
JOURNAL OF THE ACM, 1985, 32 (04) :804-823
[5]   Approximate Distance Oracles for Unweighted Graphs in Expected O(n2) Time [J].
Baswana, Surender ;
Sen, Sandeep .
ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (04)
[6]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[7]   Tree spanners for bipartite graphs and probe interval graphs [J].
Brandstaedt, Andreas ;
Dragan, Feodor F. ;
Le, Hoang-Oanh ;
Le, Van Bang ;
Uehara, Ryuhei .
ALGORITHMICA, 2007, 47 (01) :27-51
[8]   NP-COMPLETENESS OF MINIMUM SPANNER PROBLEMS [J].
CAI, LH .
DISCRETE APPLIED MATHEMATICS, 1994, 48 (02) :187-194
[9]   SPANNERS IN GRAPHS OF BOUNDED DEGREE [J].
CAI, LZ ;
KEIL, M .
NETWORKS, 1994, 24 (04) :233-249
[10]   TREE SPANNERS [J].
CAI, LZ ;
CORNEIL, DG .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (03) :359-387