EvidenceQuest: An Interactive Evidence Discovery System for Explainable Artificial Intelligence

被引:0
作者
Hanif, Ambreen [1 ]
Beheshti, Amin [1 ]
Zhang, Xuyun [1 ]
Wood, Steven [2 ]
Benatallah, Boualem [3 ]
Foo, Eu Jin [1 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
[2] Prospa, Sydney, NSW, Australia
[3] Dublin City Univ, Dublin, Ireland
来源
PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024 | 2024年
关键词
Explainable Artificial Intelligence; Evidence; interactive dashboard; pipeline;
D O I
10.1145/3616855.3635697
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Explainable Artificial Intelligence (XAI) aims to make artificial intelligence (AI) systems transparent and understandable to humans, providing clear explanations for the decisions made by AI models. This paper presents a novel pipeline and a digital dashboard that provides a user-friendly platform for interpreting the results of machine learning algorithms using XAI technology. The dashboard utilizes evidence-based design principles to deliver information clearly and concisely, enabling users to better understand the decisions made by their algorithms. We integrate XAI services into the dashboard to explain the algorithm's predictions, allowing users to understand howtheir models function and make informed decisions. We demonstrate a motivating scenario in banking and present how the proposed system enhances transparency and accountability and improves trust in the technology.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 23 条
[1]   Explainability for artificial intelligence in healthcare: a multidisciplinary perspective [J].
Amann, Julia ;
Blasimme, Alessandro ;
Vayena, Effy ;
Frey, Dietmar ;
Madai, Vince I. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
[2]  
Nguyen A, 2015, PROC CVPR IEEE, P427, DOI 10.1109/CVPR.2015.7298640
[3]  
Beheshti A., 2022, Social data analytics
[4]   iStory: Intelligent Storytelling with Social Data [J].
Beheshti, Amin ;
Tabebordbar, Alireza ;
Benatallah, Boualem .
WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, :253-256
[5]   Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission [J].
Caruana, Rich ;
Lou, Yin ;
Gehrke, Johannes ;
Koch, Paul ;
Sturm, Marc ;
Elhadad, Noemie .
KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, :1721-1730
[6]   Machine Learning Interpretability: A Survey on Methods and Metrics [J].
Carvalho, Diogo, V ;
Pereira, Eduardo M. ;
Cardoso, Jaime S. .
ELECTRONICS, 2019, 8 (08)
[7]   Feature Selection Using Approximated High-Order Interaction Components of the Shapley Value for Boosted Tree Classifier [J].
Chu, Carlin Chun Fai ;
Chan, David Po Kin .
IEEE ACCESS, 2020, 8 (08) :112742-112750
[8]  
Ehsan Upol, 2020, HCI INT 2020 LATE BR, V22, P449, DOI DOI 10.1007/978-3-030-60117-133
[9]  
feature Store for ML, 2021, Feature Store For ML
[10]   Shapley Values for Feature Selection: The Good, the Bad, and the Axioms [J].
Fryer, Daniel ;
Strumke, Inga ;
Nguyen, Hien .
IEEE ACCESS, 2021, 9 :144352-144360