Influence maximization under equilibrious groups in social networks

被引:1
作者
Li, Runzhi [1 ]
Zhu, Jianming [1 ]
Wang, Guoqing [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Emergency Management Sci & Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Equilibrious group; Entropy; Influence maximization; Social network; UNCERTAINTY; BARRIERS;
D O I
10.1007/s11227-024-06300-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In a market, there are many groups caused by geographical location or other reasons, and consumers in groups have their own brand preferences for a type of products. The diversity of consumers' brand preferences will avoid the phenomenon of brand simplification and monopoly caused by consistent brand reference of consumers, and to some extent, promote the prosperity and development of various brands in each group. For brand diversification in a market, we hope the brand preferences of consumers in each groups are as equilibrious as possible, so Influence Maximization under Equilibrious Groups (IMEG) is proposed to select k nodes to maximize the number of equilibrious groups after information diffusion. This paper proves that the IMEG is NP-hard, and computing the objective function is #P-hard. It also proves that the objective function is neither submodular nor supermodular under Independent Cascade (IC) model and Linear Threshold (LT) model. Then, the Equilibrious Groups Maximization Solution (EGMS) algorithm is presented to solve our problem. And by comparing with baseline algorithms using different datasets (dolphins, wildbird, weaver and hamsterster), it can be found that the EGMS has obvious advantages in time complexity and spatial complexity. In particular, the running time of EGMS is about 3.7x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.7\times 10<^>{-2}$$\end{document}, 2.4x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4\times 10<^>{-2}$$\end{document}, 1.1x10-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\times 10<^>{-1}$$\end{document} and 1.8x10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.8\times 10<^>{-3}$$\end{document} times that of the fastest baseline algorithm in dolphins, wildbird, weaver and hamsterster respectively. And the experiments in small-world, scale-free, random and regular network verify the robustness of EGMS with the varying parameters, such as the number of nodes, the probability of adding edges and the number of adjacencies.
引用
收藏
页码:22190 / 22212
页数:23
相关论文
共 53 条
[1]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[2]   NEW PRODUCT GROWTH FOR MODEL CONSUMER DURABLES [J].
BASS, FM .
MANAGEMENT SCIENCE SERIES A-THEORY, 1969, 15 (05) :215-227
[3]  
Borgs C., 2014, P 25 ANN ACM SIAM S, P946, DOI DOI 10.1137/1.9781611973402.70
[4]  
Carolyn S., 1974, FAM CONSUM SCI RES J, V3, P33, DOI [10.1177/1077727X7400300104, DOI 10.1177/1077727X7400300104]
[5]  
Changming J, 2011, 7 INT C NAT COMP
[6]  
Chen Y., 2020, J MATH-UK, V111, P2020
[7]  
Dempster AP, 2008, STUD FUZZ SOFT COMP, V219, P57
[8]   Deng entropy [J].
Deng, Yong .
CHAOS SOLITONS & FRACTALS, 2016, 91 :549-553
[9]  
Domingos P., 2001, P 7 ACM SIGKDD INT C, P57, DOI [DOI 10.1145/502512.502525, 10.1145/502512.502525]
[10]  
ERDOS P, 1960, B INT STATIST INST, V38, P343