Exploring the dynamical bifurcation and stability analysis of Nipah virus; novel perspectives utilizing fractional calculus

被引:7
作者
Ramzan, Sehrish [1 ]
Rashid, Saima [1 ,2 ]
Shah, Muzamil Abbas [3 ]
Elagan, Sayed K. [4 ]
机构
[1] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38000, Pakistan
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022, Lebanon
[3] Richmond Amer Univ London, Dept Business, London, England
[4] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
关键词
Fractal-fractional operators; Nipah virus epidemic; Bifurcation analysis; Sensitivity analysis; Reproduction number; Local and global stability; Numerical algorithm; Fractional lagrange polynomial; Fractal newton approximation; ENCEPHALITIS; INFECTION; EPIDEMIOLOGY; TRANSMISSION; OUTBREAK; MODELS;
D O I
10.1007/s40808-024-02071-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A zoonotic virus called the Nipah virus (NV) can create deadly illness epidemics in humans. The animal host repository for NV is the fruit bat, sometimes referred to as the flying fox. It has been documented to infect pigs, which are regarded as intermediary carriers. Scientists' interest in infectious disease modeling has surged because non-integer-order derivatives work so well. In this work, we present a model of NV infection propagation that accounts for both the disappearance of antibodies in rehabilitated people and all human-to-host animal propagation. Taking into consideration the fractal-fractional operator in the generalized Mittag-Leffler kernel sense, we contemplated the numerical solutions for the proposed model via the Lagrange interpolation polynomial technique. Several qualitative aspects of the NV model, such as positive bounded solution, disease-free equilibrium, and the basic reproduction number (R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{0}$$\end{document}), are presented with a graphic illustration to demonstrate the effectiveness of the system parameters. To establish efficient time-dependent oversight, sensitive evaluation of the framework's components is also carried out. Besides that, the local and global stability at the disease-free equilibrium point is provided in detail. Meanwhile, a fractional bifurcation framework is developed according to the sensitivity indices, and numerical simulations are used to identify the most efficient prevention approach. The mathematical mechanism of the NV model is characterized by the Atangana-Baleanu fractal-fractional differential operators, which are newly described as fractal-fractional differential operators. Three approaches were taken to examine the numerical behavior of the NV: (i) varying both the fractal dimension (eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document}) and the fractional order (omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}); (ii) varying omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} while maintaining eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} constant; and (iii) varying eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} while maintaining alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} constant. We analyzed simulation findings and visualizations of the above system using Python for numerical modeling, determining that the newly created Atangana-Baleanu fractal-fractional differential operators yield superior outcomes in comparison to the classical framework.
引用
收藏
页码:5427 / 5448
页数:22
相关论文
共 46 条
[1]   A malaria model with Caputo-Fabrizio and Atangana-Baleanu derivatives [J].
Abboubakar, Hamadjam ;
Kumar, Pushpendra ;
Rangaig, Norodin A. ;
Kumar, Sachin .
INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2021, 12 (02)
[2]   A fractal-fractional-order modified Predator-Prey mathematical model with immigrations [J].
Ali, Zeeshan ;
Rabiei, Faranak ;
Hosseini, Kamyar .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 207 :466-481
[3]   Numerical investigation of thermal improvement of system in existence of nanofluid and magnetic force [J].
Almarashi, Adel ;
Alzahrani, Saleh Mousa ;
Othman, Hakeem A. ;
Altoum, Sami H. ;
Iqbal, Zahoor ;
Ahmad, Al-Nashri Al-Hossain ;
Musa, Awad .
CASE STUDIES IN THERMAL ENGINEERING, 2023, 47
[4]   Mathematical modeling and simulation for malaria disease transmission using the CF fractional derivative [J].
Alqahtani, A. S. ;
Ramzan, Sehrish ;
Zanib, Syeda Alishwa ;
Nazir, Aqsa ;
Masood, Khalid ;
Malik, M. Y. .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 101 :193-204
[5]   Assessing the environmental impact of industrial pollution using the complex intuitionistic fuzzy ELECTREE method: a case study of pollution control measures [J].
Ashraf, Shahzaib ;
Ali, Mubashar ;
Sohail, Muhammad ;
Eldin, Sayed M. .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2023, 11
[6]   Modeling attractors of chaotic dynamical systems with fractal-fractional operators [J].
Atangana, Abdon ;
Qureshi, Sania .
CHAOS SOLITONS & FRACTALS, 2019, 123 :320-337
[8]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[9]   Hopf Bifurcation and Stability of Periodic Solutions for Delay Differential Model of HIV Infection of CD4+ T-cells [J].
Balasubramaniam, P. ;
Prakash, M. ;
Rihan, Fathalla A. ;
Lakshmanan, S. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[10]   Stability analysis and system properties of Nipah virus transmission: A fractional calculus case study [J].
Baleanu, Dumitru ;
Shekari, Parisa ;
Torkzadeh, Leila ;
Ranjbar, Hassan ;
Jajarmi, Amin ;
Nouri, Kazem .
CHAOS SOLITONS & FRACTALS, 2023, 166