Review of Unsupervised Domain Adaptation in Medical Image Segmentation

被引:2
|
作者
Hu, Wei [1 ]
Xu, Qiaozhi [1 ]
Ge, Xiangwei [1 ]
Yu, Lei [2 ]
机构
[1] College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot,010022, China
[2] Inner Mongolia Autonomous Region People’s Hospital, Hohhot,010020, China
关键词
Image segmentation - Medical image processing;
D O I
10.3778/j.issn.1002-8331.2307-0421
中图分类号
学科分类号
摘要
Medical image segmentation has broad application prospects in the field of medical image processing, providing auxiliary information for diagnosis and treatment by locating and segmenting interested organs, tissues, or lesion areas. However, there is a domain offset problem between different modalities of medical images, which can lead to a significant decrease in the performance of the segmentation model during actual deployment. Domain adaptation technology is an effective way to solve this problem, especially unsupervised domain adaptation, which has become a research hotspot in the field of medical image processing because it does not require target domain label information. At present, there are relatively few review reports on unsupervised domain adaptation research in medical image segmentation. Therefore, this paper summarizes, analyzes, and prospects the future of unsupervised domain adaptation research in medical image segmentation in recent years, hoping to help relevant researchers quickly understand and familiarize themselves with the current research status and trends in this field. © 2024 Editorial Department of Scientia Agricultura Sinica. All rights reserved.
引用
收藏
页码:10 / 26
相关论文
共 50 条
  • [21] Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis
    Zhang, Yifan
    Wei, Ying
    Wu, Qingyao
    Zhao, Peilin
    Niu, Shuaicheng
    Huang, Junzhou
    Tan, Mingkui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7834 - 7844
  • [22] Histogram matching-enhanced adversarial learning for unsupervised domain adaptation in medical image segmentation
    Qian, Xiaoxue
    Shao, Hua-Chieh
    Li, Yunxiang
    Lu, Weiguo
    Zhang, You
    MEDICAL PHYSICS, 2025,
  • [23] S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation
    Liu, Luyan
    Zhang, Zhengdong
    Li, Shuai
    Ma, Kai
    Zheng, Yefeng
    MEDICAL IMAGE ANALYSIS, 2021, 74
  • [24] Unsupervised Domain Adaptation for Medical Image Segmentation with Dynamic Prototype-based Contrastive Learning
    En, Qing
    Guo, Yuhong
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, 2024, 248 : 312 - 325
  • [25] LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation
    Zhao, Ziyuan
    Zhou, Fangcheng
    Xu, Kaixin
    Zeng, Zeng
    Guan, Cuntai
    Zhou, S. Kevin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) : 633 - 646
  • [26] Unsupervised Domain Adaptation for Medical Image Segmentation by Selective Entropy Constraints and Adaptive Semantic Alignment
    Feng, Wei
    Ju, Lie
    Wang, Lin
    Song, Kaimin
    Zhao, Xin
    Ge, Zongyuan
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 623 - 631
  • [27] Unsupervised Domain Adaptation for Medical Image Segmentation via Self-Training of Early Features
    Sheikh, Rasha
    Schultz, Thomas
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1096 - 1107
  • [28] Unsupervised domain adaptation for histopathology image segmentation with incomplete labels
    Zhou H.
    Wang Y.
    Zhang B.
    Zhou C.
    Vonsky M.S.
    Mitrofanova L.B.
    Zou D.
    Li Q.
    Computers in Biology and Medicine, 2024, 171
  • [29] Scale variance minimization for unsupervised domain adaptation in image segmentation
    Guan, Dayan
    Huang, Jiaxing
    Lu, Shijian
    Xiao, Aoran
    PATTERN RECOGNITION, 2021, 112
  • [30] FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation
    Wang, Yan
    Cheng, Jian
    Chen, Yixin
    Shao, Shuai
    Zhu, Lanyun
    Wu, Zhenzhou
    Liu, Tao
    Zhu, Haogang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (12) : 3738 - 3751