Review of Unsupervised Domain Adaptation in Medical Image Segmentation

被引:2
|
作者
Hu, Wei [1 ]
Xu, Qiaozhi [1 ]
Ge, Xiangwei [1 ]
Yu, Lei [2 ]
机构
[1] College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot,010022, China
[2] Inner Mongolia Autonomous Region People’s Hospital, Hohhot,010020, China
关键词
Image segmentation - Medical image processing;
D O I
10.3778/j.issn.1002-8331.2307-0421
中图分类号
学科分类号
摘要
Medical image segmentation has broad application prospects in the field of medical image processing, providing auxiliary information for diagnosis and treatment by locating and segmenting interested organs, tissues, or lesion areas. However, there is a domain offset problem between different modalities of medical images, which can lead to a significant decrease in the performance of the segmentation model during actual deployment. Domain adaptation technology is an effective way to solve this problem, especially unsupervised domain adaptation, which has become a research hotspot in the field of medical image processing because it does not require target domain label information. At present, there are relatively few review reports on unsupervised domain adaptation research in medical image segmentation. Therefore, this paper summarizes, analyzes, and prospects the future of unsupervised domain adaptation research in medical image segmentation in recent years, hoping to help relevant researchers quickly understand and familiarize themselves with the current research status and trends in this field. © 2024 Editorial Department of Scientia Agricultura Sinica. All rights reserved.
引用
收藏
页码:10 / 26
相关论文
共 50 条
  • [11] Unsupervised Domain Adaptation for Medical Image Segmentation Using Transformer With Meta Attention
    Ji, Wen
    Chung, Albert C. S.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (02) : 820 - 831
  • [12] Fusing feature and output space for unsupervised domain adaptation on medical image segmentation
    Wang, Shengsheng
    Fu, Zihao
    Wang, Bilin
    Hu, Yulong
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1672 - 1681
  • [13] Dual domain distribution disruption with semantics preservation: Unsupervised domain adaptation for medical image segmentation
    Zheng, Boyun
    Zhang, Ranran
    Diao, Songhui
    Zhu, Jingke
    Yuan, Yixuan
    Cai, Jing
    Shao, Liang
    Li, Shuo
    Qin, Wenjian
    MEDICAL IMAGE ANALYSIS, 2024, 97
  • [14] Unsupervised Domain Adaptation in Semantic Segmentation: A Review
    Toldo, Marco
    Maracani, Andrea
    Michieli, Umberto
    Zanuttigh, Pietro
    TECHNOLOGIES, 2020, 8 (02)
  • [15] Unsupervised Domain Adaptation for Medical Image Segmentation by Disentanglement Learning and Self-Training
    Xie, Qingsong
    Li, Yuexiang
    He, Nanjun
    Ning, Munan
    Ma, Kai
    Wang, Guoxing
    Lian, Yong
    Zheng, Yefeng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 4 - 14
  • [16] OLVA: Optimal Latent Vector Alignment for Unsupervised Domain Adaptation in Medical Image Segmentation
    Al Chanti, Dawood
    Mateus, Diana
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 261 - 271
  • [17] Unsupervised Domain Adaptation with Dual-Scheme Fusion Network for Medical Image Segmentation
    Zou, Danbing
    Zhu, Qikui
    Yan, Pingkun
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3291 - 3298
  • [18] Style mixup enhanced disentanglement learning for unsupervised domain adaptation in medical image segmentation
    Cai, Zhuotong
    Xin, Jingmin
    You, Chenyu
    Shi, Peiwen
    Dong, Siyuan
    Dvornek, Nicha C.
    Zheng, Nanning
    Duncan, James S.
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [19] Semantic Consistent Unsupervised Domain Adaptation for Cross-Modality Medical Image Segmentation
    Zeng, Guodong
    Lerch, Till D.
    Schmaranzer, Florian
    Zheng, Guoyan
    Burger, Juergen
    Gerber, Kate
    Tannast, Moritz
    Siebenrock, Klaus
    Gerber, Nicolas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 201 - 210
  • [20] Domain Specific Convolution and High Frequency Reconstruction Based Unsupervised Domain Adaptation for Medical Image Segmentation
    Hu, Shishuai
    Liao, Zehui
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VII, 2022, 13437 : 650 - 659