Charge Density and Redox Potential of LiNiO2 Using Ab Initio Diffusion Quantum Monte Carlo

被引:0
|
作者
Saritas K. [1 ]
Grossman J.C. [1 ]
Fadel E.R. [1 ,2 ,3 ]
Kozinsky B. [2 ,3 ]
机构
[1] Materials Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, MA
[2] John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, MA
[3] Robert Bosch LLC, Research and Technology Center North America, Cambridge, 02142, MA
来源
Journal of Physical Chemistry C | 2020年 / 124卷 / 11期
关键词
D O I
10.1021/ACS.JPCC.9B10372
中图分类号
学科分类号
摘要
We investigate the charge densities, lithium intercalation potentials, and Li-diffusion barrier energies of LixNiO2 (0.0 < x < 1.0) system using the diffusion quantum Monte Carlo (DMC) method. We find an average redox potential of 4.1(2) eV and a Li-diffusion barrier energy of 0.39(3) eV with DMC. Comparisoin of the charge densities from DMC and density functional theory (DFT) and show that local and semilocal DFT functionals yield spin polarization densities with an incorrect sign on the oxygen atoms. The SCAN functional and Hubbard-U correction improves the polarization density around Ni and O atoms, resulting in smaller deviations from the DMC densities. DMC accurately captures the many-body nature of Ni−O bonding, hence yielding accurate lithium intercalation voltages, polarization densities, and reaction barriers. [Figure presented] © 2020 American Chemical Society. All rights reserved.
引用
收藏
页码:5893 / 5901
页数:8
相关论文
共 50 条
  • [31] Enhancement of Sampling Efficiency in ab Initio Monte Carlo Simulations Using an Auxiliary Potential Energy Surface
    Nakayama, Akira
    Taketsugu, Tetsuya
    ADVANCES IN QUANTUM MONTE CARLO, 2012, 1094 : 27 - 40
  • [32] Oxygen diffusion in nickel: Ab initio calculations in combination with kinetic Monte Carlo approach
    Alfonso, Dominic
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [33] An Ab Initio and Kinetic Monte Carlo Simulation Study of Lithium Ion Diffusion on Graphene
    Zhong, Kehua
    Yang, Yanmin
    Xu, Guigui
    Zhang, Jian-Min
    Huang, Zhigao
    MATERIALS, 2017, 10 (07):
  • [34] Speeding up ab initio diffusion Monte Carlo simulations by a smart lattice regularization
    Nakano, Kousuke
    Maezono, Ryo
    Sorella, Sandro
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [35] Lattice Monte Carlo simulations of vacancy-mediated diffusion and aggregation using ab-initio parameters
    Bunea, MM
    Dunham, ST
    DEFECTS AND DIFFUSION IN SILICON PROCESSING, 1997, 469 : 353 - 358
  • [36] Diffusion quantum Monte Carlo on multiple-potential surfaces
    McCoy, AB
    CHEMICAL PHYSICS LETTERS, 2000, 321 (1-2) : 71 - 77
  • [37] Mitigating the High-Charge Detrimental Phase Transformation in LiNiO2 Using Doping Engineering
    Cheng, Jianli
    Ouyang, Bin
    Persson, Kristin A.
    ACS ENERGY LETTERS, 2023, 8 (05) : 2401 - 2407
  • [38] Many-body optimization using an ab initio Monte Carlo method
    Haubein, NC
    McMillan, SA
    Broadbelt, LJ
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (01): : 68 - 74
  • [39] Monte Carlo calculations for phase equilibria using ab initio potentials.
    McGrath, MJ
    Siepmann, JI
    Kuo, WIF
    Mundy, CJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1035 - U1035
  • [40] Efficient sampling for ab initio Monte Carlo simulation of molecular clusters using an interpolated potential energy surface
    Nakayama, Akira
    Seki, Nanami
    Taketsugu, Tetsuya
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (02):