Charge Density and Redox Potential of LiNiO2 Using Ab Initio Diffusion Quantum Monte Carlo

被引:0
|
作者
Saritas K. [1 ]
Grossman J.C. [1 ]
Fadel E.R. [1 ,2 ,3 ]
Kozinsky B. [2 ,3 ]
机构
[1] Materials Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, 02139, MA
[2] John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, MA
[3] Robert Bosch LLC, Research and Technology Center North America, Cambridge, 02142, MA
来源
Journal of Physical Chemistry C | 2020年 / 124卷 / 11期
关键词
D O I
10.1021/ACS.JPCC.9B10372
中图分类号
学科分类号
摘要
We investigate the charge densities, lithium intercalation potentials, and Li-diffusion barrier energies of LixNiO2 (0.0 < x < 1.0) system using the diffusion quantum Monte Carlo (DMC) method. We find an average redox potential of 4.1(2) eV and a Li-diffusion barrier energy of 0.39(3) eV with DMC. Comparisoin of the charge densities from DMC and density functional theory (DFT) and show that local and semilocal DFT functionals yield spin polarization densities with an incorrect sign on the oxygen atoms. The SCAN functional and Hubbard-U correction improves the polarization density around Ni and O atoms, resulting in smaller deviations from the DMC densities. DMC accurately captures the many-body nature of Ni−O bonding, hence yielding accurate lithium intercalation voltages, polarization densities, and reaction barriers. [Figure presented] © 2020 American Chemical Society. All rights reserved.
引用
收藏
页码:5893 / 5901
页数:8
相关论文
共 50 条
  • [21] Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule
    Kita, Yukiumi
    Maezono, Ryo
    Tachikawa, Masanori
    Towler, Mike
    Needs, Richard J.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (13):
  • [22] Quantum Monte Carlo for Ab Initio Calculations of Energy-Relevant Materials
    Wagner, Lucas K.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (02) : 94 - 101
  • [23] Quantum Monte Carlo: An ab initio molecular computational methodology for terascalle computing
    Aspuru-Guzik, Alan
    Salomon-Ferrer, Romelia
    Austin, Brian
    Domin, ik Domin
    Skinner, David
    Oliva, Ricardo
    Lester, William A., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1283 - U1283
  • [24] Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
    Zen, Andrea
    Luo, Ye
    Mazzola, Guglielmo
    Guidoni, Leonardo
    Sorella, Sandro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (14):
  • [25] Calculating the entanglement spectrum in quantum Monte Carlo with application to ab initio Hamiltonians
    Tubman, Norm M.
    Yang, D. ChangMo
    PHYSICAL REVIEW B, 2014, 90 (08):
  • [26] Ab initio quantum Monte Carlo simulation of the warm dense electron gas
    Dornheim, Tobias
    Groth, Simon
    Malone, Fionn D.
    Schoof, Tim
    Sjostrom, Travis
    Foulkes, W. M. C.
    Bonitz, Michael
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [27] Using Density Matrix Quantum Monte Carlo for Calculating Exact-on-Average Energies for ab Initio Hamiltonians in a Finite Basis Set
    Petras, Hayley R.
    Ramadugu, Sai Kumar
    Malone, Fionn D.
    Shepherd, James J.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (02) : 1029 - 1038
  • [28] Monte Carlo simulations of neon and argon using ab initio potentials
    Leonhard, K
    Deiters, UK
    MOLECULAR PHYSICS, 2000, 98 (20) : 1603 - 1616
  • [29] Characterization of ArnO- clusters from ab initio and diffusion Monte Carlo calculations
    Jakowski, J
    Chalasinski, G
    Gallegos, J
    Severson, MW
    Szczesniak, MM
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (06): : 2748 - 2759
  • [30] Fluorine clustering and diffusion in silicon: Ab initio calculations and kinetic Monte Carlo model
    Vollenweider, Kilian
    Sahli, Beat
    Zographos, Nikolas
    Zechner, Christoph
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (01): : C1G1 - C1G6