Quasinormalizers in crossed products of von Neumann algebras

被引:0
作者
Bannon, Jon P. [1 ]
Cameron, Jan [2 ]
Chifan, Ionut [3 ,4 ]
Mukherjee, Kunal [5 ]
Smith, Roger [6 ]
Wiggins, Alan [2 ]
机构
[1] Siena Coll, Dept Math, 515 Loudon Rd, Loudonville, NY 12211 USA
[2] Vassar Coll, Dept Math & Stat, Poughkeepsie, NY 12604 USA
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Indian Inst Technol Madras, Chennai 600036, India
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[6] Univ Michigan, Dept Math & Stat, Dearborn, MI 48281 USA
基金
美国国家科学基金会;
关键词
Ergodic theory; Von Neumann algebras; W-RIGID GROUPS; MALLEABLE ACTIONS; II1; FACTORS; STRONG SINGULARITY; SUBALGEBRAS; SUPERRIGIDITY; CLASSIFICATION; SUBFACTORS; PROPERTY; COCYCLE;
D O I
10.1016/j.aim.2024.109535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the relationship between the dynamics of the action alpha of a discrete group G on a von Neumann algebra M, and structural properties of the associated crossed product inclusion L(G) subset of M kappa alpha G, and its intermediate subalgebras. This continues a thread of research originating in classical structural results for ergodic actions of discrete, abelian groups on probability spaces. A key tool in the setting of a noncommutative dynamical system is the set of quasinormalizers for an inclusion of von Neumann algebras. We show that the von Neumann algebra generated by the quasinormalizers captures analytical properties of the inclusion L(G) subset of M kappa alpha G such as the Haagerup Approximation Property, and is essential to capturing "almost periodic" behavior in the underlying dynamical system. Our von Neumann algebraic point of view yields a new description of the Furstenb erg-Zimmer distal tower for an ergodic action on a probability space, and we establish new versions of the Furstenb erg-Zimmer structure theorem for general, tracial W*-dynamical systems. We present a number of examples contrasting the noncommutative and classical settings which also build on previous work concerning singular inclusions of finite von Neumann algebras. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 46 条
[1]  
Agol I, 2013, DOC MATH, V18, P1045
[2]  
Anantharaman C., PREPRINT
[3]   NONCONVENTIONAL ERGODIC AVERAGES AND MULTIPLE RECURRENCE FOR VON NEUMANN DYNAMICAL SYSTEMS [J].
Austin, Tim ;
Eisner, Tanja ;
Tao, Terence .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 250 (01) :1-60
[4]   Noncommutative joinings II [J].
Bannon, Jon ;
Cameron, Jan ;
Mukherjee, Kunal .
GROUPS GEOMETRY AND DYNAMICS, 2021, 15 (02) :553-575
[5]   On Noncommutative Joinings [J].
Bannon, Jon P. ;
Cameron, Jan ;
Mukherjee, Kunal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (15) :4734-4779
[6]   ON THE METHOD OF CONSTRUCTING IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA [J].
BOCA, F .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) :201-231
[7]  
Cameron J, 2013, NEW YORK J MATH, V19, P343
[8]   Relative Haagerup property for arbitrary von Neumann algebras [J].
Caspers, Martijn ;
Klisse, Mario ;
Skalski, Adam ;
Vos, Gerrit ;
Wasilewski, Mateusz .
ADVANCES IN MATHEMATICS, 2023, 421
[9]  
Chifan I., 2011, PREPRINT
[10]  
Chifan I., 2024, Amer. J. Math., V146, DOI [10.48550/arXiv.2003.08857, DOI 10.48550/ARXIV.2003.08857]