Aggregation of Incentivized Learning Models in Mobile Federated Learning Environments

被引:3
|
作者
Wang, Yuwei [1 ]
Kantarci, Burak [1 ]
Mardini, Wail [1 ]
机构
[1] School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa
来源
IEEE Networking Letters | 2021年 / 3卷 / 04期
关键词
deep neural networks; Distributed learning; federated learning; mobile networks; reputation systems;
D O I
10.1109/LNET.2021.3108673
中图分类号
学科分类号
摘要
We propose a reputation and budget-constrained selection methodology along with an auction-driven incentive scheme in a Federated Learning (FL) setting. The reputation score is built on the performance metrics of the local models, and the incentive aims to ensure all participants are rewarded according to the quality of their contributions. With the dynamic adjustment of the user compensation to distribute the benefits more fairly, the proposed incentive increases user utilities with the increasing platform budget. The incentive achieves positive user utility without compromising the aggregated model accuracy. Moreover, the platform utility remains consistent with respect to the baselines. © 2019 IEEE.
引用
收藏
页码:196 / 200
页数:4
相关论文
共 50 条
  • [21] Embedded Federated Learning for VANET Environments
    Valente, Renato
    Senna, Carlos
    Rito, Pedro
    Sargento, Susana
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [22] A robust analysis of adversarial attacks on federated learning environments
    Nair, Akarsh K.
    Raj, Ebin Deni
    Sahoo, Jayakrushna
    COMPUTER STANDARDS & INTERFACES, 2023, 86
  • [23] FedQL: Q-Learning Guided Aggregation for Federated Learning
    Cao, Mei
    Zhao, Mengying
    Zhang, Tingting
    Yu, Nanxiang
    Lu, Jianbo
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT I, 2024, 14487 : 263 - 282
  • [24] Byzantine-Robust Aggregation for Federated Learning with Reinforcement Learning
    Yan, Sizheng
    Du, Junping
    Xue, Zhe
    Li, Ang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 152 - 166
  • [25] Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models
    Fischer, John
    Orescanin, Marko
    Loomis, Justin
    Mcclure, Patrick
    IEEE ACCESS, 2024, 12 : 185790 - 185806
  • [26] RSF: Reinforcement learning based hybrid split and federated learning for edge computing environments
    Soleimani, Alireza
    Anabestani, Negar
    Momtazpour, Mahmoud
    2024 32ND INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEE 2024, 2024, : 836 - 842
  • [27] FAST-CONVERGENT FEDERATED LEARNING VIA CYCLIC AGGREGATION
    Lee, Youngjoon
    Park, Sangwoo
    Kang, Joonhyuk
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2175 - 2179
  • [28] On Social Consensus Mechanisms for Federated Learning Aggregation
    de Camargo, Igor Felipe
    Antunes, Rodolfo Stoffel
    Ramos, Gabriel de O.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 236 - 250
  • [29] Quality Inference in Federated Learning with Secure Aggregation
    Pejó B.
    Biczók G.
    IEEE Transactions on Big Data, 2023, 9 (05): : 1430 - 1437
  • [30] Federated learning with superquantile aggregation for heterogeneous data
    Pillutla, Krishna
    Laguel, Yassine
    Malick, Jerome
    Harchaoui, Zaid
    MACHINE LEARNING, 2024, 113 (05) : 2955 - 3022