Resonance-dominant optomechanical entanglement in open quantum systems

被引:6
作者
Shang, Cheng [1 ,2 ]
Li, Hongchao [3 ]
机构
[1] Univ Tokyo, Dept Phys, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778574, Japan
[2] RIKEN Ctr Quantum Comp RQC, Analyt Quantum Complex RIKEN Hakubi Res Team, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[3] Univ Tokyo, Dept Phys, 7-3-1 Hongo, Tokyo 1130033, Japan
关键词
2-MODE GAUSSIAN STATES; RADIATION-PRESSURE; OSCILLATOR; CRITERION; MIRROR; MOTION; NOISE;
D O I
10.1103/PhysRevApplied.21.044048
中图分类号
O59 [应用物理学];
学科分类号
摘要
Motivated by entanglement protection, our work utilizes a resonance effect to enhance optomechanical entanglement in the coherent -state representation. We propose a filtering model to filter out the significant detuning components between a thermal -mechanical mode and its surrounding heat baths in the weak -coupling limit. We reveal that protecting continuous -variable entanglement involves the elimination of degrees of freedom associated with significant detuning components, thereby resisting decoherence. We construct a nonlinear Langevin equation of the filtering model and numerically show that the filtering model doubles the robustness of the stationary maximum optomechanical entanglement to the thermal fluctuation noise and mechanical damping. Furthermore, we generalize these results to an optical cavity array with one oscillating end mirror to investigate the long-distance optimal optomechanicalentanglement transfer. Our study breaks new ground for applying the resonance effect to protect quantum systems from decoherence and advancing the possibilities of large-scale quantum information processing and quantum network construction.
引用
收藏
页数:23
相关论文
共 107 条
[1]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[2]   MASTER-EQUATIONS FOR A DAMPED NONLINEAR OSCILLATOR AND THE VALIDITY OF THE MARKOVIAN APPROXIMATION [J].
ALICKI, R .
PHYSICAL REVIEW A, 1989, 40 (07) :4077-4081
[3]  
[Anonymous], 2000, The Physics of Quantum Information
[4]   Frequency stabilization in nonlinear micromechanical oscillators [J].
Antonio, Dario ;
Zanette, Damian H. ;
Lopez, Daniel .
NATURE COMMUNICATIONS, 2012, 3
[5]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[6]  
ASHCROFT NW, 1976, SOLID STATE PHYS
[7]  
Aspelmeyer M, 2014, QUANT SCI TECH, P1, DOI 10.1007/978-3-642-55312-7
[8]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[9]   Quantum optomechanics [J].
Aspelmeyer, Markus ;
Meystre, Pierre ;
Schwab, Keith .
PHYSICS TODAY, 2012, 65 (07) :29-35
[10]   Mesoscopic physics of nanomechanical systems [J].
Bachtold, Adrian ;
Moser, Joel ;
Dykman, M. I. .
REVIEWS OF MODERN PHYSICS, 2022, 94 (04)