Modeling the propagation of internal thermal runaway in lithium-ion battery

被引:15
作者
Zhang, Yue [1 ]
Song, Laifeng [1 ]
Tian, Jiamin [1 ]
Mei, Wenxin [1 ]
Jiang, Lihua [1 ]
Sun, Jinhua [1 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium -ion battery; Internal thermal runaway; Numerical modeling; Triggering energy; Battery configuration; ABUSE;
D O I
10.1016/j.apenergy.2024.123004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The trend toward high capacity and huge size in lithium -ion batteries has made it necessary to investigate the internal thermal characteristics. In this study, a thermal runaway model was developed to describe lithium -ion batteries' internal thermal characteristics. Moreover, triggering energy was proposed as a critical feature for evaluating and characterizing the thermal runaway under diverse thermal abuse situations, with large differences among characteristic temperatures. Finally, the effects of battery configuration on thermal runaway behaviors were investigated. The modeling results showed that internal temperature distribution can be divided into four characteristic stages with two jelly rolls, and the application of more numerous and thinner cells inside a battery can accelerate the propagation of thermal runaway. The experimental results showed that the ratio of triggering energy of self -heat onset to total self -heat generation remained consistent in an adiabatic environment. The mean value of the ratio was 24.5%, indicating that lithium iron phosphate batteries obtain most of the energy (generally 80%) from internal exothermic reactions during adiabatic thermal abuse. The triggering energy of thermal runaway remained constant when various heating powers were applied to one of the batteries' laterals (about 20.8% of theoretical energy contained inside lithium iron phosphate batteries). Triggering energy can provide new insights into the modeling of thermal runaway mechanisms and propagation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries
    Zhirong Wang
    Ning Mao
    Fengwei Jiang
    Journal of Thermal Analysis and Calorimetry, 2020, 140 : 2849 - 2863
  • [42] Experimental study on the thermal runaway and its propagation of a lithium-ion traction battery with NCM cathode under thermal abuse
    Wang H.-B.
    Li Y.
    Wang Q.-Z.
    Du Z.-M.
    Feng X.-N.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (05): : 663 - 675
  • [43] Thermal runaway behaviors of lithium-ion battery for electric vehicles: Experimental and modeling studies with realistic applications to a battery pack
    Wu, Jun
    Zhang, Xiong
    Chen, Hu
    Guo, Wei
    Yao, Jian
    Wei, Dan
    Zhu, Linpei
    Ouyang, Chenzhi
    Wang, Qingquan
    Hu, Qianqian
    Jin, Changyong
    Xu, Chengshan
    Feng, Xuning
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [44] Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway
    Sadeghi, Hosein
    Restuccia, Francesco
    JOURNAL OF POWER SOURCES, 2025, 629
  • [45] Visual and thermal imaging of lithium-ion battery thermal runaway induced by mechanical impact
    Said, Mohamad Syazarudin Md
    Tohir, Mohd Zahirasri Mohd
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [46] Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module
    Zhou, Zhizuan
    Zhou, Xiaodong
    Li, Maoyu
    Cao, Bei
    Liew, K. M.
    Yang, Lizhong
    APPLIED ENERGY, 2022, 327
  • [47] The retarding effect of liquid-cooling thermal management on thermal runaway propagation in lithium-ion batteries
    Ke, Qiaomin
    Li, Xin
    Guo, Jian
    Cao, Wenjiong
    Wang, Yiwei
    Jiang, Fangming
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [48] Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules
    Liu, Tong
    Tao, Changfa
    Wang, Xishi
    APPLIED ENERGY, 2020, 267
  • [49] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Li, Yawen
    Jiang, Lihua
    Huang, Zonghou
    Jia, Zhuangzhuang
    Qin, Peng
    Wang, Qingsong
    FIRE TECHNOLOGY, 2023, 59 (03) : 1137 - 1155
  • [50] Toxicity, Emissions and Structural Damage from Lithium-Ion Battery Thermal Runaway
    Zhou, Tian
    Sun, Jie
    Li, Jigang
    Wei, Shouping
    Chen, Jing
    Dang, Shengnan
    Tang, Na
    Zhu, Yuefeng
    Lian, Yukun
    Guo, Jun
    Zhang, Fan
    Xie, Hongjia
    Li, Huiyu
    Qiu, Xinping
    Chen, Liquan
    BATTERIES-BASEL, 2023, 9 (06):