Modeling the propagation of internal thermal runaway in lithium-ion battery

被引:15
|
作者
Zhang, Yue [1 ]
Song, Laifeng [1 ]
Tian, Jiamin [1 ]
Mei, Wenxin [1 ]
Jiang, Lihua [1 ]
Sun, Jinhua [1 ]
Wang, Qingsong [1 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium -ion battery; Internal thermal runaway; Numerical modeling; Triggering energy; Battery configuration; ABUSE;
D O I
10.1016/j.apenergy.2024.123004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The trend toward high capacity and huge size in lithium -ion batteries has made it necessary to investigate the internal thermal characteristics. In this study, a thermal runaway model was developed to describe lithium -ion batteries' internal thermal characteristics. Moreover, triggering energy was proposed as a critical feature for evaluating and characterizing the thermal runaway under diverse thermal abuse situations, with large differences among characteristic temperatures. Finally, the effects of battery configuration on thermal runaway behaviors were investigated. The modeling results showed that internal temperature distribution can be divided into four characteristic stages with two jelly rolls, and the application of more numerous and thinner cells inside a battery can accelerate the propagation of thermal runaway. The experimental results showed that the ratio of triggering energy of self -heat onset to total self -heat generation remained consistent in an adiabatic environment. The mean value of the ratio was 24.5%, indicating that lithium iron phosphate batteries obtain most of the energy (generally 80%) from internal exothermic reactions during adiabatic thermal abuse. The triggering energy of thermal runaway remained constant when various heating powers were applied to one of the batteries' laterals (about 20.8% of theoretical energy contained inside lithium iron phosphate batteries). Triggering energy can provide new insights into the modeling of thermal runaway mechanisms and propagation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [22] Thermal runaway and flame propagation of lithium-ion battery in confined spaces: Experiments and simulations
    Xu, Yingying
    Lu, Jiajun
    Zhang, Pengwei
    Gao, Kejie
    Huang, Yuqi
    JOURNAL OF ENERGY STORAGE, 2025, 117
  • [23] Thermal and Electrochemical Analysis of Thermal Runaway Propagation of Samsung Cylindrical Cells in Lithium-ion Battery Modules
    Belt, Jeffrey
    Sorensen, Alexander
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (01)
  • [24] Numerical investigation of suppressing thermal runaway propagation in a lithium-ion battery pack using thermal insulators
    Gong, Junhui
    Liu, Bo
    Lian, Haochen
    Liu, Jingyi
    Fu, Hui
    Miao, Yuxuan
    Liu, Jialong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 1063 - 1075
  • [25] Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling
    Jin, Changyong
    Sun, Yuedong
    Wang, Huaibin
    Zheng, Yuejiu
    Wang, Shuyu
    Rui, Xinyu
    Xu, Chengshan
    Feng, Xuning
    Wang, Hewu
    Ouyang, Minggao
    APPLIED ENERGY, 2022, 312
  • [26] Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules
    Wang, Huaibin
    Liu, Bo
    Xu, Chengshan
    Jin, Changyong
    Li, Kuijie
    Du, Zhiming
    Wang, Qinzheng
    Ouyang, Minggao
    Feng, Xuning
    JOURNAL OF POWER SOURCES, 2022, 520
  • [27] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81
  • [28] Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling
    Jin, Changyong
    Sun, Yuedong
    Wang, Huaibin
    Zheng, Yuejiu
    Wang, Shuyu
    Rui, Xinyu
    Xu, Chengshan
    Feng, Xuning
    Wang, Hewu
    Ouyang, Minggao
    APPLIED ENERGY, 2022, 312
  • [29] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [30] Simulation of Onset and Propagation of Heat within Lithium-ion Battery Pack During Thermal Runaway
    Bhat, Chalukya
    Channegowda, Janamejaya
    George, Victor
    Chaudhari, Shilpa
    Naraharisetti, Kali
    2021 IEEE PES/IAS POWERAFRICA CONFERENCE, 2021, : 549 - 551