A review of evaluation approaches for explainable AI with applications in cardiology

被引:10
作者
Salih, Ahmed M. [1 ,2 ,3 ]
Galazzo, Ilaria Boscolo [4 ]
Gkontra, Polyxeni [5 ]
Rauseo, Elisa [1 ]
Lee, Aaron Mark [1 ]
Lekadir, Karim [5 ,6 ]
Radeva, Petia [7 ]
Petersen, Steffen E. [1 ,8 ,9 ,10 ]
Menegaz, Gloria [4 ]
机构
[1] Queen Mary Univ London, William Harvey Res Inst, NIHR Barts Biomed Res Ctr, Charterhouse Sq, London EC1M 6BQ, England
[2] Univ Leicester, Dept Populat Hlth Sci, Univ Rd, Leicester LE1 7RH, England
[3] Univ Zakho, Dept Comp Sci, Duhok Rd, Zakho, Kurdistan, Iraq
[4] Univ Verona, Dept Engn Innovat Med, S Francesco 22, I-37129 Verona, Italy
[5] Univ Barcelona, Fac Math & Comp Sci, Artificial Intelligence Med Lab BCN AIM, Gran Via Corts Catalanes 585, Barcelona 08007, Barcelona, Spain
[6] Inst Catalana Recerca & Estudis Avancats ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
[7] Univ Barcelona, Dept Matemat & Informat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
[8] St Bartholomews Hosp, Barts Heart Ctr, Barts Hlth NHS Trust, London, England
[9] Hlth Data Res, London, England
[10] Alan Turing Inst, London, England
关键词
Cardiac; AI; XAI; Evaluation; ARTIFICIAL-INTELLIGENCE; PULMONARY-HYPERTENSION; ATRIAL-FIBRILLATION; RISK PREDICTION; LEARNING-MODEL; CARDIAC EVENTS; HEART-FAILURE; MACHINE; ELECTROCARDIOGRAM; MORTALITY;
D O I
10.1007/s10462-024-10852-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models.
引用
收藏
页数:44
相关论文
共 263 条
[1]   Explaining individual predictions when features are dependent: More accurate approximations to Shapley values [J].
Aas, Kjersti ;
Jullum, Martin ;
Loland, Anders .
ARTIFICIAL INTELLIGENCE, 2021, 298
[2]  
Abdullah Talal A. A., 2022, 2022 International Conference on Future Trends in Smart Communities (ICFTSC), P87, DOI 10.1109/ICFTSC57269.2022.10039860
[3]   B-LIME: An Improvement of LIME for Interpretable Deep Learning Classification of Cardiac Arrhythmia from ECG Signals [J].
Abdullah, Talal A. A. ;
Zahid, Mohd Soperi Mohd ;
Ali, Waleed ;
Ul Hassan, Shahab .
PROCESSES, 2023, 11 (02)
[4]   Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty [J].
Abraham, Vivek Mathew ;
Booth, Greg ;
Geiger, Phillip ;
Balazs, George Christian ;
Goldman, Ashton .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2022, 480 (11) :2137-2145
[5]   ECG-iCOVIDNet: Interpretable AI model to identify changes in the ECG signals of post-COVID subjects [J].
Agrawal, Amulya ;
Chauhan, Aniket ;
Shetty, Manu Kumar ;
Girish, M. P. ;
Gupta, Mohit D. ;
Gupta, Anubha .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[6]   Machine learning cardiac-MRI features predict mortality in newly diagnosed pulmonary arterial hypertension [J].
Alabed, Samer ;
Uthoff, Johanna ;
Zhou, Shuo ;
Garg, Pankaj ;
Dwivedi, Krit ;
Alandejani, Faisal ;
Gosling, Rebecca ;
Schobs, Lawrence ;
Brook, Martin ;
Shahin, Yousef ;
Capener, Dave ;
Johns, Christopher S. ;
Wild, Jim M. ;
Rothman, Alexander M. K. ;
van der Geest, Rob J. ;
Condliffe, Robin ;
Kiely, David G. ;
Lu, Haiping ;
Swift, Andrew J. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02) :265-275
[7]   Deep learning identifies cardiac coupling between mother and fetus during gestation [J].
Alkhodari, Mohanad ;
Widatalla, Namareq ;
Wahbah, Maisam ;
Al Sakaji, Raghad ;
Funamoto, Kiyoe ;
Krishnan, Anita ;
Kimura, Yoshitaka ;
Khandoker, Ahsan H. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[8]   Explainable AI decision model for ECG data of cardiac disorders [J].
Anand, Atul ;
Kadian, Tushar ;
Shetty, Manu Kumar ;
Gupta, Anubha .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
[9]   Detection of abnormal left ventricular geometry in patients without cardiovascular disease through machine learning: An ECG-based approach [J].
Angelaki, Eleni ;
Marketou, Maria E. ;
Barmparis, Georgios D. ;
Patrianakos, Alexandros ;
Vardas, Panos E. ;
Parthenakis, Fragiskos ;
Tsironis, Giorgos P. .
JOURNAL OF CLINICAL HYPERTENSION, 2021, 23 (05) :935-945
[10]  
Apama C., 2022, Current Directions in Biomedical Engineering, P723, DOI [10.1515/cdbme-2022-1184, 10.1515/cdbme-2022-1184]