Personalized Machine Learning-Based Prediction of Wellbeing and Empathy in Healthcare Professionals

被引:2
作者
Nan, Jason [1 ,2 ]
Herbert, Matthew S. [3 ,4 ,5 ]
Purpura, Suzanna [1 ,3 ]
Henneken, Andrea N. [4 ,5 ]
Ramanathan, Dhakshin [1 ,3 ,4 ,5 ]
Mishra, Jyoti [1 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Neural Engn & Translat Labs, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
[4] VA San Diego Med Ctr, Dept Mental Hlth, San Diego, CA 92161 USA
[5] VA San Diego Med Ctr, Ctr Excellence Stress & Mental Hlth, San Diego, CA 92161 USA
关键词
machine learning; healthcare professionals; empathy; wellbeing; N-of-1; model; EMA; DIETARY ASSESSMENT; SUICIDAL-IDEATION; BURNOUT; PHYSICIANS; ANXIETY; INTERVENTIONS; SATISFACTION; ASSOCIATION; COMPASSION; DEPRESSION;
D O I
10.3390/s24082640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Healthcare professionals are known to suffer from workplace stress and burnout, which can negatively affect their empathy for patients and quality of care. While existing research has identified factors associated with wellbeing and empathy in healthcare professionals, these efforts are typically focused on the group level, ignoring potentially important individual differences and implications for individualized intervention approaches. In the current study, we implemented N-of-1 personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social connections) were collected daily for up to three months followed by applying eight supervised machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately. Predictive insight into the model architecture was obtained using Shapley statistics for each of the best-fit personalized models, ranking the importance of each feature for each participant. The best-fit model and top features varied across participants, with anxious mood (13/19) and depressed mood (10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the top predictors of each other in 64% of cases. These findings highlight shared and individual features of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the future, such personalized models may serve as actionable insights for healthcare professionals that lead to increased wellness and quality of patient care.
引用
收藏
页数:17
相关论文
共 74 条
[1]  
Ashforth BE, 1997, J ORGAN BEHAV, V18, P703, DOI 10.1002/(SICI)1099-1379(199711)18:6<703::AID-JOB847>3.0.CO
[2]  
2-1
[3]   Effect of Anxiety on Empathy: An Observational Study Among Nurses [J].
Ayuso-Murillo, Diego ;
Colomer-Sanchez, Ana ;
Santiago-Magdalena, Carlos Romero ;
Lendinez-Mesa, Alejandro ;
Benitez De Gracia, Elvira ;
Lopez-Pelaez, Antonio ;
Herrera-Peco, Ivan .
HEALTHCARE, 2020, 8 (02)
[4]   TimeSHAP: Explaining Recurrent Models through Sequence Perturbations [J].
Bento, Joao ;
Saleiro, Pedro ;
Cruz, Andre F. ;
Figueiredo, Mario A. T. ;
Bizarro, Pedro .
KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, :2565-2573
[5]   Informal fatigue-related risk management in the emergency department: A trade-off between doing well and feeling well [J].
Berastegui, Pierre ;
Jaspar, Mathieu ;
Ghuysen, Alexandre ;
Nyssen, Anne-Sophie .
SAFETY SCIENCE, 2020, 122
[6]   Non-academic factors influencing the development of empathy in undergraduate nursing students: a cross-sectional study [J].
Berduzco-Torres, Nancy ;
Medina, Pamela ;
San-Martin, Montserrat ;
Delgado Bolton, Roberto C. ;
Vivanco, Luis .
BMC NURSING, 2021, 20 (01)
[7]   Effects of 12 Weeks of At-Home, Application-Based Exercise on Health Care Workers' Depressive Symptoms, Burnout, and Absenteeism A Randomized Clinical Trial [J].
Boucher, Vincent Gosselin ;
Haight, Brook L. L. ;
Hives, Benjamin A. A. ;
Zumbo, Bruno D. D. ;
Merali-Dewji, Aaliya ;
Hutton, Stacey ;
Liu, Yan ;
Nguyen, Suzanne ;
Beauchamp, Mark R. R. ;
Black, Agnes T. T. ;
Puterman, Eli .
JAMA PSYCHIATRY, 2023, 80 (11) :1101-1109
[8]  
Branco P., 2017, 1 INT WORKSHOP LEARN, P36
[9]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[10]   Illusory generalizability of clinical prediction models [J].
Chekroud, Adam M. ;
Hawrilenko, Matt ;
Loho, Hieronimus ;
Bondar, Julia ;
Gueorguieva, Ralitza ;
Hasan, Alkomiet ;
Kambeitz, Joseph ;
Corlett, Philip R. ;
Koutsouleris, Nikolaos ;
Krumholz, Harlan M. ;
Krystal, John H. ;
Paulus, Martin .
SCIENCE, 2024, 383 (6679) :164-167