Notes on universality in short intervals and exponential shifts

被引:2
作者
Andersson, Johan [1 ]
Garunkstis, Ramunas [2 ]
Kacinskaite, Roma [2 ,3 ]
Nakai, Keita [4 ]
Pankowski, Lukasz [5 ]
Sourmelidis, Athanasios [6 ]
Steuding, Rasa [7 ]
Steuding, Joern [7 ]
Wananiyakul, Saeree [8 ]
机构
[1] Orebro Univ, Inst Sci & Technol, Div Math, Orebro, Sweden
[2] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[3] Vytautas Magnus Univ, Fac Informat, Dept Math & Stat, Univ Str 10, LT-53361 Akademija, Lithuania
[4] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya 4648602, Japan
[5] Adam Mickiewicz Univ, Fac Math & Comp Sci, Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
[6] Graz Univ Technol, Inst Anal & Number Theory, Steyrergasse 30, A-8010 Graz, Austria
[7] Wurzburg Univ, Dept Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[8] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
关键词
universality; zeta-functions; exponent pairs; exponential shifts; RIEMANN ZETA-FUNCTION; MEAN-SQUARE; THEOREM;
D O I
10.1007/s10986-024-09631-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve a recent universality theorem for the Riemann zeta-function in short intervals due to Antanas Laurin & ccaron;ikas with respect to the length of these intervals. Moreover, we prove that the shifts can even have exponential growth. This research was initiated by two questions proposed by Laurin & ccaron;ikas in a problem session of a recent workshop on universality.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 22 条
[1]  
Andersson J., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2310.03619
[2]  
BALASUBRAMANIAN R, 1978, P LOND MATH SOC, V36, P540
[3]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[4]   Decoupling for Perturbed Cones and the Mean Square of |ζ(1/2+it)| [J].
Bourgain, Jean ;
Watt, Nigel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (17) :5219-5296
[5]   A new kth derivative estimate for exponential sums via Vinogradov's mean value [J].
Heath-Brown, D. R. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 296 (01) :88-103
[6]  
Ivic A., 1985, RIEMANN ZETA FUNCTIO
[7]   DISCRETE UNIVERSALITY OF THE RIEMANN ZETA-FUNCTION IN SHORT INTERVALS [J].
Laurincikas, Antanas .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (02) :382-405
[8]   Universality of the Riemann zeta-function in short intervals [J].
Laurincikas, Antanas .
JOURNAL OF NUMBER THEORY, 2019, 204 :279-295
[9]   A generalization of the Voronin theorem [J].
Laurincikas, Antanas ;
Macaitiene, Renata ;
Siauciunas, Darius .
LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (02) :156-168
[10]  
Laurinikas A., 1995, LITH MATH J, V35, P399, DOI DOI 10.1007/BF02335599