Fabrication, characterization and evaluating properties of 3D printed PLA-Mn scaffolds

被引:5
|
作者
Dehghan-Toranposhti, Sina [1 ,2 ]
Bakhshi, Rasoul [1 ]
Alizadeh, Reza [1 ]
Bohlouli, Mahboubeh [3 ]
机构
[1] Sharif Univ Technol, Dept Mat Sci & Engn, Azadi Ave, Tehran 111559466, Iran
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC USA
[3] Shahid Beheshti Univ Med Sci, Sch Adv Technol Med, Dept Tissue Engn & Appl Cell Sci, Tehran, Iran
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Biodegradation; Bone tissue scaffold; FDM; Manganese; PLA; 3D printing; MECHANICAL-PROPERTIES; MELTING BEHAVIOR; BIOCOMPATIBILITY; NANOCOMPOSITES; WETTABILITY; COMPOSITES; NANOFIBERS; ROUGHNESS; MANGANESE;
D O I
10.1038/s41598-024-67478-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polylactic acid (PLA) based scaffolds have attained considerable attention in recent years for being used as biodegradable implants in bone tissue engineering (BTE), owing to their suitable biocompatibility and processability. Nevertheless, the mechanical properties, bioactivity and biodegradation rate of PLA need to be improved for practical application. In this investigation, PLA-xMn composite filaments (x = 0, 1, 3, 5 and 7 wt%) were fabricated, characterized, and used for 3D printing of scaffolds by the fused deposition modeling process. The effect of Mn addition on the thermal, physical, mechanical, and structural properties, as well as the degradability and cell viability of 3D printed scaffolds were investigated in details. The obtained results indicate that the PLA-Mn composite filaments exhibit higher chain mobility and melt flow index values, with lower cold crystallization temperature and a higher degree of crystallinity. This higher flowability led to lower dimensional accuracy of 3D printed scaffolds, but resulted in higher interlayer adhesion. It was found that the mechanical properties of composite scaffolds were remarkably enhanced with the addition of Mn particles. The incorporation of Mn particles also caused higher surface roughness and hydrophilicity, a superior biodegradation rate of the scaffolds as well as better biocompatibility, indicating a promising candidate for (BTE) applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fabrication and Characterization of 3D Printed PLA
    Arora, Jassimran Kaur
    Bhati, Pooja
    PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35), 2020, 2205
  • [2] Mechanical Properties of 3D Printed PLA Scaffolds for Bone Regeneration
    Kundreckaite, Paula
    Sesok, Andzela
    Stonkus, Rimantas
    Gaidulis, Gediminas
    Romanczuk-Ruszuk, Eliza
    Pauk, Jolanta
    ACTA MECHANICA ET AUTOMATICA, 2024, 18 (04) : 182 - 189
  • [3] Development and Characterization of PLA/PCL Blend Filaments and 3D Printed Scaffolds
    Eryildiz, Meltem
    Karakus, Aleyna
    Eksi, Mihrigul Altan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [4] Characterization of 3D Printed Metal-PLA Composite Scaffolds for Biomedical Applications
    Buj-Corral, Irene
    Sanz-Fraile, Hector
    Ulldemolins, Anna
    Tejo-Otero, Aitor
    Dominguez-Fernandez, Alejandro
    Almendros, Isaac
    Otero, Jorge
    POLYMERS, 2022, 14 (13)
  • [5] Design, fabrication, and characterization of 3D-printed ABS and PLA scaffolds potentially for tissue engineering
    Rahatuzzaman, Md
    Mahmud, Minar
    Rahman, Sazedur
    Hoque, Md Enamul
    RESULTS IN ENGINEERING, 2024, 21 (21)
  • [6] Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds
    Gendviliene, Ieva
    Simoliunas, Egidijus
    Rekstyte, Sima
    Malinauskas, Mangirdas
    Zaleckas, Linas
    Jegelevicius, Darius
    Bukelskiene, Virginija
    Rutkunas, Vygandas
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 104
  • [7] Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles
    Wang, Qifan
    Ma, Zhiyong
    Wang, Ying
    Zhong, Linna
    Xie, Wenjia
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (01) : 60 - 71
  • [8] Fabrication and characterization of 3D printed biocomposite scaffolds based on PCL and zirconia nanoparticles
    Qifan Wang
    Zhiyong Ma
    Ying Wang
    Linna Zhong
    Wenjia Xie
    Bio-Design and Manufacturing, 2021, 4 : 60 - 71
  • [9] Optimization and significance of fabrication parameters on the mechanical properties of 3D printed Chitosan/PLA scaffold
    Abifarin, Johnson Kehinde
    Prakash, Chander
    Singh, Sunpreet
    MATERIALS TODAY-PROCEEDINGS, 2022, 50 : 2018 - 2025
  • [10] Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties
    Ansari, Mohammad Aftab Alam
    Jain, Prashant Kumar
    Nanda, Himansu Sekhar
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2023, 34 (10) : 1408 - 1429