Safe Control Design for Unknown Nonlinear Systems with Koopman-based Fixed-Time Identification

被引:5
作者
Black, Mitchell [1 ]
Panagou, Dimitra [1 ,2 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Control of constrained systems; identification for control; robust adaptive control; fixed-time stability; nonlinear system identification; CONTROL BARRIER FUNCTIONS; PARAMETER-IDENTIFICATION; STABILIZATION; FINITE;
D O I
10.1016/j.ifacol.2023.10.421
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of safe control design for a class of nonlinear, control-affine systems subject to an unknown, additive, nonlinear disturbance. Leveraging recent advancements in the application of Koopman operator theory to the field of system identification and control, we introduce a novel fixed-time identification scheme for the infinitesimal generator of the infinite-dimensional, but notably linear, Koopman dynamical system analogous to the nonlinear system of interest. That is, we derive a parameter adaptation law that allows us to recover the unknown, residual nonlinear dynamics in the system within a finite-time, independent of an initial estimate. We then use properties of fixed-time stability to derive an estimation error bound on the unknown dynamics as an explicit function of time, which allows us to synthesize a safe controller using control barrier function based methods. We conduct a quadrotor-inspired case study in support of our proposed method, in which we show that safe trajectory tracking is achieved despite unknown, nonlinear dynamics. Copyright (c) 2023 The Authors.
引用
收藏
页码:11369 / 11376
页数:8
相关论文
共 28 条
[1]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[2]  
Black M., 2022, arXiv
[3]  
Black M, 2022, Arxiv, DOI arXiv:2204.10453
[4]  
Black M, 2020, IEEE DECIS CONTR P, P2726, DOI 10.1109/CDC42340.2020.9304071
[5]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[6]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[7]   Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control [J].
Brunton, Steven L. ;
Brunton, Bingni W. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PLOS ONE, 2016, 11 (02)
[8]   Quad-Rotor Flight Simulation in Realistic Atmospheric Conditions [J].
Davoudi, Behdad ;
Taheri, Ehsan ;
Duraisamy, Karthik ;
Jayaraman, Balaji ;
Kolmanovsky, Ilya .
AIAA JOURNAL, 2020, 58 (05) :1992-2004
[9]   Identification of Nonlinear Systems Using the Infinitesimal Generator of the Koopman Semigroup-A Numerical Implementation of the Mauroy-Goncalves Method [J].
Drmac, Zlatko ;
Mezic, Igor ;
Mohr, Ryan .
MATHEMATICS, 2021, 9 (17)
[10]   Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators [J].
Folkestad, Carl ;
Chen, Yuxiao ;
Ames, Aaron D. ;
Burdick, Joel W. .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06) :2012-2017