Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank

被引:1
作者
Hillary, Robert F. [1 ,2 ,3 ]
Gadd, Danni A. [1 ,2 ,3 ]
Kuncheva, Zhana [1 ,3 ,4 ]
Mangelis, Tasos [1 ,3 ,4 ]
Lin, Tinchi [3 ]
Ferber, Kyle [3 ]
Mclaughlin, Helen [3 ]
Runz, Heiko [3 ]
Marshall, Eric [3 ]
Marioni, Riccardo E. [1 ,2 ,3 ]
Foley, Christopher N. [1 ,3 ,4 ]
Sun, Benjamin B. [3 ,5 ]
机构
[1] Optima Partners, Edinburgh EH2 4HQ, Scotland
[2] Univ Edinburgh, Inst Genet & Canc, Ctr Genom & Expt Med, Edinburgh EH4 2XU, Scotland
[3] Translat Sci Res & Dev Biogen Inc, Cambridge, MA 02142 USA
[4] Univ Edinburgh, Bayes Ctr, Edinburgh EH8 9BT, Scotland
[5] Univ Cambridge, Dept Publ Hlth & Primary Care, Cardiovasc Epidemiol Unit, Cambridge CB1 8RN, England
基金
英国惠康基金;
关键词
PHENOTYPIC VARIABILITY; FLT3; LIGAND; GLYCODELIN; VARIANTS; HEALTH; MASS;
D O I
10.1038/s41467-024-51744-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding how gene-environment interactions (GEIs) influence the circulating proteome could aid in biomarker discovery and validation. The presence of GEIs can be inferred from single nucleotide polymorphisms that associate with phenotypic variability - termed variance quantitative trait loci (vQTLs). Here, vQTL association studies are performed on plasma levels of 1463 proteins in 52,363 UK Biobank participants. A set of 677 independent vQTLs are identified across 568 proteins. They include 67 variants that lack conventional additive main effects on protein levels. Over 1100 GEIs are identified between 101 proteins and 153 environmental exposures. GEI analyses uncover possible mechanisms that explain why 13/67 vQTL-only sites lack corresponding main effects. Additional analyses also highlight how age, sex, epistatic interactions and statistical artefacts may underscore associations between genetic variation and variance heterogeneity. This study establishes the most comprehensive database yet of vQTLs and GEIs for the human proteome. Here, the authors integrate genomic, proteomic, and phenotypic data from UK Biobank, identifying over 1,100 gene-environment interactions. They catalogue interactions between 101 blood proteins and 153 exposures, which may refine biomarker discovery.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Genetic interactions affecting human gene expression identified by variance association mapping
    Brown, Andrew Anand
    Buil, Alfonso
    Vinuela, Ana
    Lappalainen, Tuuli
    Zheng, Hou-Feng
    Richards, John B.
    Small, Kerrin S.
    Spector, Timothy D.
    Dermitzakis, Emmanouil T.
    Durbin, Richard
    [J]. ELIFE, 2014, 3
  • [2] The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019
    Buniello, Annalisa
    MacArthur, Jacqueline A. L.
    Cerezo, Maria
    Harris, Laura W.
    Hayhurst, James
    Malangone, Cinzia
    McMahon, Aoife
    Morales, Joannella
    Mountjoy, Edward
    Sollis, Elliot
    Suveges, Daniel
    Vrousgou, Olga
    Whetzel, Patricia L.
    Amode, Ridwan
    Guillen, Jose A.
    Riat, Harpreet S.
    Trevanion, Stephen J.
    Hall, Peggy
    Junkins, Heather
    Flicek, Paul
    Burdett, Tony
    Hindorff, Lucia A.
    Cunningham, Fiona
    Parkinson, Helen
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D1005 - D1012
  • [3] The UK Biobank resource with deep phenotyping and genomic data
    Bycroft, Clare
    Freeman, Colin
    Petkova, Desislava
    Band, Gavin
    Elliott, Lloyd T.
    Sharp, Kevin
    Motyer, Allan
    Vukcevic, Damjan
    Delaneau, Olivier
    O'Connell, Jared
    Cortes, Adrian
    Welsh, Samantha
    Young, Alan
    Effingham, Mark
    McVean, Gil
    Leslie, Stephen
    Allen, Naomi
    Donnelly, Peter
    Marchini, Jonathan
    [J]. NATURE, 2018, 562 (7726) : 203 - +
  • [4] A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity
    Cao, Ying
    Wei, Peng
    Bailey, Matthew
    Kauwe, John S. K.
    Maxwell, Taylor J.
    [J]. GENETIC EPIDEMIOLOGY, 2014, 38 (01) : 51 - 59
  • [5] Second-generation PLINK: rising to the challenge of larger and richer datasets
    Chang, Christopher C.
    Chow, Carson C.
    Tellier, Laurent C. A. M.
    Vattikuti, Shashaank
    Purcell, Shaun M.
    Lee, James J.
    [J]. GIGASCIENCE, 2015, 4
  • [6] Revisiting the genome-wide significance threshold for common variant GWAS
    Chen, Zhongsheng
    Boehnke, Michael
    Wen, Xiaoquan
    Mukherjee, Bhramar
    [J]. G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [7] Cumulus oophorus-associated glycodelin-C displaces sperm-bound glycodelin-A and -F and stimulates spermatozoa-zona pellucida binding
    Chiu, Philip C. N.
    Chung, Man-Kin
    Koistinen, Riitta
    Koistinen, Hannu
    Seppala, Markku
    Ho, Pak-Chung
    Ng, Ernest H. Y.
    Lee, Kai-Fai
    Yeung, William S. B.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (08) : 5378 - 5388
  • [8] Coordination of microbial metabolism
    Chubukov, Victor
    Gerosa, Luca
    Kochanowski, Karl
    Sauer, Uwe
    [J]. NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) : 327 - 340
  • [9] Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters
    Del Giudice, Marco
    Gangestad, Steven W.
    [J]. BRAIN BEHAVIOR AND IMMUNITY, 2018, 70 : 61 - 75
  • [10] Genetic variants influencing phenotypic variance heterogeneity
    Ek, Weronica E.
    Rask-Andersen, Mathias
    Karlsson, Torgny
    Enroth, Stefan
    Gyllensten, Ulf
    Johansson, Asa
    [J]. HUMAN MOLECULAR GENETICS, 2018, 27 (05) : 799 - 810