共 58 条
An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model
被引:6
作者:

Lv, Yunlong
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China

Hu, Qin
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China

Xu, Hang
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China

Lin, Huiyao
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China

Wu, Yufan
论文数: 0 引用数: 0
h-index: 0
机构:
Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China
机构:
[1] Chongqing Univ, XuefengMt Energy Equipment Safety Natl Observat &, Chongqing 400044, Peoples R China
来源:
关键词:
Attention mechanism;
Spatiotemporal correlation;
Renewable energy;
Wind power forecasting;
MEMORY NEURAL-NETWORK;
MULTISTEP;
SYSTEM;
DECOMPOSITION;
STRATEGY;
D O I:
10.1016/j.energy.2024.130751
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Accurate and robust wind power forecasting (WPF) is great significance to ensure the safe and stable operation of the power system and promote the transformation of low-carbon energy. However, the high randomness and intermittency of wind power bring great challenges when designing reliable forecasting models. In this paper, a novel spatial-temporal attention graph convolutional network model is proposed. Firstly, the spatial attention mechanism is used to aggregate and extract the spatial correlations of the raw wind power data. Secondly, the temporal attention mechanism is applied to capture the temporal correlations. Then, the extracted spatialtemporal correlations were put into the temporal convolution network and the spatial convolution network to further obtain the temporal and spatial dependencies. Finally, the wind power forecasting results is output through the full connection layer. The proposed method is verified by using wind power data from real wind farm in China. The experimental results reveal that the proposed depth spatiotemporal prediction model has more significant advantages than other advanced models in terms of prediction accuracy and stability.
引用
收藏
页数:15
相关论文
共 58 条
- [1] A boundary layer scaling technique for estimating near-surface wind energy using numerical weather prediction and wind map data[J]. APPLIED ENERGY, 2017, 208 : 1246 - 1257Allen, D. J.论文数: 0 引用数: 0 h-index: 0机构: Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandTomlin, A. S.论文数: 0 引用数: 0 h-index: 0机构: Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandBale, C. S. E.论文数: 0 引用数: 0 h-index: 0机构: Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Earth & Environm, Sustainabil Res Inst, Leeds LS2 9JT, W Yorkshire, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandSkea, A.论文数: 0 引用数: 0 h-index: 0机构: Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandVosper, S.论文数: 0 引用数: 0 h-index: 0机构: Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, EnglandGallani, M. L.论文数: 0 引用数: 0 h-index: 0机构: Met Off, Fitzroy Rd, Exeter EX1 3PB, Devon, England Univ Leeds, Sch Chem & Proc Engn, Doctoral Training Ctr Low Carbon Technol, Leeds LS2 9JT, W Yorkshire, England
- [2] A Hybrid Optimized Model of Adaptive Neuro-Fuzzy Inference System, Recurrent Kalman Filter and Neuro-Wavelet for Wind Power Forecasting Driven by DFIG[J]. ENERGY, 2022, 239Aly, Hamed H. H.论文数: 0 引用数: 0 h-index: 0机构: Dalhousie Univ, Elect & Comp Engn Dept, Halifax, NS, Canada Dalhousie Univ, Elect & Comp Engn Dept, Halifax, NS, Canada
- [3] Spatio-temporal wind speed forecasting using graph networks and novel Transformer architectures[J]. APPLIED ENERGY, 2023, 333Bentsen, Lars Odegaard论文数: 0 引用数: 0 h-index: 0机构: Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, Norway Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, NorwayWarakagoda, Narada Dilp论文数: 0 引用数: 0 h-index: 0机构: Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, Norway Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, NorwayStenbro, Roy论文数: 0 引用数: 0 h-index: 0机构: Inst Energy Technol, POB 40, N-2027 Kjeller, Viken, Norway Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, NorwayEngelstad, Paal论文数: 0 引用数: 0 h-index: 0机构: Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, Norway Univ Oslo, Dept Technol Syst, POB 70, N-2027 Kjeller, Viken, Norway
- [4] Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window[J]. ENERGY, 2023, 263Bilal, Boudy论文数: 0 引用数: 0 h-index: 0机构: Ecole Super Polytech, UR EEDD, BP 4303, Nouakchott, Mauritania Univ Nouakchott Aasriya, URAER, FST, BP 5026, Nouakchott, Mauritania Ecole Super Polytech, UR EEDD, BP 4303, Nouakchott, MauritaniaAdjallah, Kondo Hloindo论文数: 0 引用数: 0 h-index: 0机构: Univ Lorraine, LCOMS EA7306, 1rte Ars Laquenexy, F-57070 Metz, France Ecole Super Polytech, UR EEDD, BP 4303, Nouakchott, MauritaniaSava, Alexandre论文数: 0 引用数: 0 h-index: 0机构: Univ Lorraine, LCOMS EA7306, 1rte Ars Laquenexy, F-57070 Metz, France Ecole Super Polytech, UR EEDD, BP 4303, Nouakchott, MauritaniaYetilmezsoy, Kaan论文数: 0 引用数: 0 h-index: 0机构: Yildiz Tech Univ, Fac Civil Engn, Dept Environm Engn, Davutpasa Campus, TR-34220 Istanbul, Turkiye Ecole Super Polytech, UR EEDD, BP 4303, Nouakchott, Mauritania论文数: 引用数: h-index:机构:
- [5] Medium-term wind power forecasting based on multi-resolution multi-learner ensemble and adaptive model selection[J]. ENERGY CONVERSION AND MANAGEMENT, 2020, 206 (206)Chen, Chao论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, IAIR,Minist Educ, Changsha 410075, Hunan, Peoples R China Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, IAIR,Minist Educ, Changsha 410075, Hunan, Peoples R ChinaLiu, Hui论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, IAIR,Minist Educ, Changsha 410075, Hunan, Peoples R China Cent South Univ, Sch Traff & Transportat Engn, Key Lab Traff Safety Track, IAIR,Minist Educ, Changsha 410075, Hunan, Peoples R China
- [6] Multifactor spatio-temporal correlation model based on a combination of convolutional neural network and long short-term memory neural network for wind speed forecasting[J]. ENERGY CONVERSION AND MANAGEMENT, 2019, 185 : 783 - 799Chen, Yong论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R ChinaZhang, Shuai论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R ChinaZhang, Wenyu论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R ChinaPeng, Juanjuan论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R ChinaCai, Yishuai论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China Zhejiang Univ Finance & Econ, Sch Informat, Hangzhou 310018, Zhejiang, Peoples R China
- [7] A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting[J]. APPLIED ENERGY, 2021, 286Dong, Yingchao论文数: 0 引用数: 0 h-index: 0机构: Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R China Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R ChinaZhang, Hongli论文数: 0 引用数: 0 h-index: 0机构: Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R China Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R ChinaWang, Cong论文数: 0 引用数: 0 h-index: 0机构: Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R China Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R ChinaZhou, Xiaojun论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Automat, Changsha 410083, Peoples R China Xinjiang Univ, Sch Elect Engn, Urumqi 830047, Xinjiang, Peoples R China
- [8] Joint modelling wind speed and power via Bayesian Dynamical models[J]. ENERGY, 2022, 247Duca, Victor E. L. A.论文数: 0 引用数: 0 h-index: 0机构: Univ Fed Rio de Janeiro, Dept Stat, UFRJ, Rio De Janeiro, Brazil Univ Fed Rio de Janeiro, Dept Stat, UFRJ, Rio De Janeiro, BrazilFonseca, Thais C. O.论文数: 0 引用数: 0 h-index: 0机构: Univ Fed Rio de Janeiro, Dept Stat, UFRJ, Rio De Janeiro, Brazil Univ Fed Rio de Janeiro, Dept Stat, UFRJ, Rio De Janeiro, BrazilCyrino Oliveira, Fernando Luiz论文数: 0 引用数: 0 h-index: 0机构: Pontifical Catholic Univ Rio de Janeiro, Dept Ind Engn, PUC Rio, Rio De Janeiro, Brazil Univ Fed Rio de Janeiro, Dept Stat, UFRJ, Rio De Janeiro, Brazil
- [9] Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method[J]. ENERGY, 2023, 266Fan, Huijing论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaZhen, Zhao论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaLiu, Nian论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaSun, Yiqian论文数: 0 引用数: 0 h-index: 0机构: State Grid Xinjiang Elect Power Co Ltd, Urumqi 830018, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaChang, Xiqiang论文数: 0 引用数: 0 h-index: 0机构: State Grid Xinjiang Elect Power Co Ltd, Urumqi 830018, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaLi, Yu论文数: 0 引用数: 0 h-index: 0机构: State Grid Xinjiang Elect Power Co Ltd, Urumqi 830018, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaWang, Fei论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China North China Elect Power Univ, Hebei Key Lab Distributed Energy Storage & Microgr, Baoding 071003, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R ChinaMi, Zengqiang论文数: 0 引用数: 0 h-index: 0机构: North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
- [10] A physics-inspired neural network model for short-term wind power prediction considering wake effects[J]. ENERGY, 2022, 261Guo, Nai-Zhi论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Univ Chinese Acad Sci, Beijing 100049, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaShi, Ke-Zhong论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Univ Chinese Acad Sci, Beijing 100049, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaLi, Bo论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaQi, Liang-Wen论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Univ Chinese Acad Sci, Beijing 100049, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaWu, Hong-Hui论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Univ Chinese Acad Sci, Beijing 100049, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaZhang, Zi-Liang论文数: 0 引用数: 0 h-index: 0机构: China Three Gorges Corp, Sci & Technol Res Inst, Beijing 100038, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R ChinaXu, Jian-Zhong论文数: 0 引用数: 0 h-index: 0机构: Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China Key Lab Wind Energy Utilizat CAS, Beijing 100190, Peoples R China Chinese Acad Sci, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China Univ Chinese Acad Sci, Beijing 100049, Peoples R China Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China