On Weighted Compactness of Commutators of Stein's Square Functions Associated with Bochner-Riesz means

被引:0
作者
Xue, Qingying [1 ]
Zhang, Chunmei [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Stein's square function; Bochner-Riesz means; Commutators; Compactness; CMO(R-n); INTEGRAL-OPERATORS; HOMOGENEOUS TYPE; BOUNDEDNESS; SPACES; BOUNDS;
D O I
10.1007/s12220-024-01775-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, our object of investigation is the commutators of the Stein's square functions asssoicated with the Bochner-Riesz means of order lambda lambda defined by G(b,m)(lambda)f(x)=(integral(infinity)(0)|integral(n)(R)(b(x)-b(y))K-m(t)lambda(x-y)f(y)dy|(2)dt/t)(1/2), where K-t(lambda)<^>(xi)=|xi|(2)/t(2)(1-|xi|(2)/t(2))+(lambda-1) and b is an element of BMO(R-n). We show that G(b,m)(lambda) is a compact operator from L-p(w) to L-p(w) for 1<pn+1/2 whenever b is an element of CMO(R-n), where CMO(R-n) is the closure of C-c(infinity)(R-n) in the BMO(R-n) topology.
引用
收藏
页数:18
相关论文
共 42 条
[1]   Compactness properties of commutators of bilinear fractional integrals [J].
Benyi, Arpad ;
Damian, Wendolin ;
Moen, Kabe ;
Torres, Rodolfo H. .
MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) :569-582
[2]  
Bényi A, 2013, P AM MATH SOC, V141, P3609
[3]   A class of multilinear bounded oscillation operators on measure spaces and applications [J].
Cao, Mingming ;
Ibanez-Firnkorn, Gonzalo ;
Rivera-Rios, Israel P. ;
Xue, Qingying ;
Yabuta, Kozo .
MATHEMATISCHE ANNALEN, 2024, 388 (04) :3627-3755
[4]   Extrapolation on function and modular spaces, and applications [J].
Cao, Mingming ;
Marin, Juan Jose ;
Martell, Jose Maria .
ADVANCES IN MATHEMATICS, 2022, 406
[5]   EXTRAPOLATION FOR MULTILINEAR COMPACT OPERATORS AND APPLICATIONS [J].
Cao, Mingming ;
Olivo, Andrea ;
Yabuta, Kozo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, :5011-5070
[6]  
Carbery A., 1985, North-Holland Math. Stud., V111, P49
[7]  
Carro MJ, 2017, J GEOM ANAL, V27, P1624, DOI 10.1007/s12220-016-9733-8
[8]   COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES [J].
Chen, Yanping ;
Ding, Yong ;
Wang, Xinxia .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02) :633-658
[9]  
[陈艳萍 CHEN Yanping], 2009, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V30, P201
[10]   COMPACTNESS CHARACTERIZATION OF COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS [J].
Chen, Yanping ;
Ding, Yong .
KODAI MATHEMATICAL JOURNAL, 2009, 32 (02) :256-323