Theoretical simulation and mechanisms of SmNiO3-based phase change metamaterial for mid-infrared dynamic thermal control

被引:0
作者
Hua W. [1 ,2 ]
Li J. [1 ,2 ]
Du Y. [1 ]
Wang H. [1 ,2 ]
Zhou H. [1 ,2 ,3 ]
机构
[1] State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai
[2] Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen
[3] Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai
来源
Optik | 2024年 / 296卷
基金
中国国家自然科学基金;
关键词
Dynamic thermal control; Metamaterial; Slow-light effect; SmNiO[!sub]3[!/sub;
D O I
10.1016/j.ijleo.2023.171556
中图分类号
学科分类号
摘要
Dynamic thermal emission control has gained increasing attention across diverse fields. Among phase change materials (PCMs), SmNiO3 has attracted many interests because of its fast phase transition and non-volatile properties. However, constructing an emissivity modulation metamaterial with angle stability performance is still rather challenging. In this work, we propose three kinds of SmNiO3-based metamaterials for mid-infrared emissivity dynamic modulation, specifically a trapezoidal metamaterial consisting of alternating SmNiO3 and Si multi-layer thin films and two modified grating metastructures, realizing an average emissivity modulation Δεaver of 0.42–0.45 in 5–16 µm. It is confirmed that the magnetic resonance stimulated inside the metamaterial is because of the slow-light effect. This work provides theoretical fundamentals for the design of dynamic thermal control metamaterials and benefits applications in the fields of infrared emission modulation. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 53 条
[1]  
Qu Y., Li Q., Cai L., Pan M., Ghosh P., Du K., Qiu M., Thermal camouflage based on the phase-changing material GST, Light Sci. Appl., 7, (2018)
[2]  
Salihoglu O., Uzlu H.B., Yakar O., Aas S., Balci O., Kakenov N., Balci S., Olcum S., Suzer S., Kocabas C., Graphene-based adaptive thermal camouflage, Nano Lett., 18, pp. 4541-4548, (2018)
[3]  
Sui C., Pu J., Chen T.H., Liang J., Lai Y.T., Rao Y., Wu R., Han Y., Wang K., Li X., Viswanathan V., Hsu P.C., Dynamic electrochromism for all-season radiative thermoregulation, Nat. Sustain., 6, pp. 428-437, (2023)
[4]  
Tang K., Dong K., Li J., Gordon M.P., Reichertz F.G., Kim H., Rho Y., Wang Q., Lin C.Y., Grigoropoulos C.P., Javey A., Urban J.J., Yao J., Levinson R., Wu J., Temperature-adaptive radiative coating for all-season household thermal regulation, Science, 374, pp. 1504-1509, (2021)
[5]  
Kim H., Cheung K., Auyeung R.C.Y., Wilson D.E., Charipar K.M., Pique A., Charipar N.A., VO2-based switchable radiator for spacecraft thermal control, Sci. Rep., 9, pp. 1-8, (2019)
[6]  
Du Z., Li M., Xu S., Li K., Zou F., Zhang R., Li G., VO<sub>2</sub>-based intelligent thermal control coating for spacecraft by regulating infrared emittance, J. Alloy. Compd., 895, (2022)
[7]  
Wu J., Wang M., Dong L., Shi J., Ohyama M., Kohsaka Y., Zhu C., Morikawa H., A trimode thermoregulatory flexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management, ACS Nano, 16, pp. 12801-12812, (2022)
[8]  
Hao Q., Li W., Xu H., Wang J., Yin Y., Wang H., Ma L., Ma F., Jiang X., Schmidt O.G., Chu P.K., VO<sub>2</sub>/TiN plasmonic thermochromic smart coatings for room-temperature applications, Adv. Mater., 30, pp. 1-5, (2018)
[9]  
Sheng S.Z., Wang J.L., Zhao B., He Z., Feng X.F., Shang Q.G., Chen C., Pei G., Zhou J., Liu J.W., Yu S.H., Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation, Nat. Commun., 14, pp. 1-9, (2023)
[10]  
Kim Y., Kim C., Lee M., Parallel laser printing of a thermal emission pattern in a phase-change thin film cavity for infrared camouflage and security, Laser Photonics Rev., 16, pp. 1-8, (2022)