Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries

被引:0
作者
Liu L. [1 ,2 ]
Feng X. [1 ]
Rahe C. [2 ]
Li W. [2 ]
Lu L. [1 ]
He X. [3 ]
Sauer D.U. [2 ]
Ouyang M. [1 ]
机构
[1] State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing
[2] Chair for Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jaegerstrasse 17/19, Aachen
[3] Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing
来源
Journal of Energy Chemistry | 2021年 / 61卷
基金
中国国家自然科学基金;
关键词
Battery safety; Energy storage; Internal short circuit; Lithium-ion battery; Thermal runaway;
D O I
10.1016/j.jechem.2021.03.025
中图分类号
学科分类号
摘要
Internal short circuit (ISC) is the major failure problem for the safe application of lithium-ion batteries, especially for the batteries with high energy density. However, how to quantify the hazard aroused by the ISC, and what kinds of ISC will lead to thermal runaway are still unclear. This paper investigates the thermal-electrical coupled behaviors of ISC, using batteries with Li(Ni1/3Co1/3Mn1/3)O2 cathode and composite separator. The electrochemical impedance spectroscopy of customized battery that has no LiPF6 salt is utilized to standardize the resistance of ISC. Furthermore, this paper compares the thermal-electrical coupled behaviors of the above four types of ISC at different states-of-charge. There is an area expansion phenomenon for the aluminum-anode type of ISC. The expansion effect of the failure area directly links to the melting and collapse of separator, and plays an important role in further evolution of thermal runaway. This work provides guidance to the development of the ISC models, detection algorithms, and correlated countermeasures. © 2021 Science Press
引用
收藏
页码:269 / 280
页数:11
相关论文
共 35 条
[1]  
Han X., Lu L., Zheng Y., Feng X., Li Z., Li J., Ouyang M., eTransportation, 1, (2019)
[2]  
Tomaszewska A., Chu Z., Feng X., O'Kane S., Liu X., Chen J., Ji C., Endler E., Li R., Liu L., Li Y., Zheng S., Vetterlein S., Gao M., Du J., Parkes M., Ouyang M., Marinescu M., Offer G., Wu B., eTransportation, 1, (2019)
[3]  
Zhang X., Sun X., Li X., Hu X., Cai S., Zheng C., J. Energy Chem., 59, pp. 343-363, (2021)
[4]  
Feng X., Ouyang M., Liu X., Lu L., Xia Y., He X., Energy Storage Mater., 10, pp. 246-267, (2018)
[5]  
Wang Q., Ping P., Zhao X., Chu G., Sun J., Chen C., J. Power Sources, 208, pp. 210-224, (2012)
[6]  
Liu P., Liu C., Yang K., Zhang M., Gao F., Mao B., Li H., Duan Q., Wang Q., J. Energy Storage, 31, (2020)
[7]  
Chen Y., Kang Y., Zhao Y., Wang L., Liu J., Li Y., Liang Z., He X., Li X., Tavajohi N., Li B., J. Energy Chem., 59, pp. 83-99, (2021)
[8]  
Zhu S., Hu C., Xu Y., Jin Y., Shui J., J. Energy Chem., 46, pp. 208-214, (2020)
[9]  
National Transportation Safety Board, (2014)
[10]  
Wang Z., Yuan J., Zhu X., Wang H., Huang L., Wang Y., Xu S., J. Energy Chem., 55, pp. 484-498, (2021)