Classification of 270 classes of vector vortex beams using Machine learning-based methods

被引:3
|
作者
Bai X. [1 ]
Wang Y. [1 ]
Dai K. [2 ]
机构
[1] Beijing University of Technology, Beijing
[2] Clemson University, Clemson, 29634, SC
来源
Optik | 2023年 / 291卷
关键词
Atmospheric turbulence; Image encryption; Machine learning; Orbital angular momentum; Polarization; Vector vortex beams;
D O I
10.1016/j.ijleo.2023.171362
中图分类号
学科分类号
摘要
Vector vortex beams (VVBs) are a promising type of structured light that combine the orbital angular momentum (OAM) and the polarization states of light. Due to their intrinsic high dimensionality, VVBs show great advantages in applications like optical communications, information encryption, and quantum information processing. However, the high dimensionality presents a challenge for pattern detection. In this paper, we compare different machine learning-based methods for classifying 270 classes of VVB using basic CNN, MobileNet, and ResNet18 neural networks. We visualize the VVB modes using a color-coding method with Stokes parameters, and the neural networks’ performance is tested in a 1 km free space communication link with four atmospheric turbulence strengths. The results demonstrate that neural networks can recognize large datasets of laser modes with good accuracies, even under turbulence environments. We also propose an image encryption scheme using the VVB dataset to encode an RGB figure which is transmitted through the turbulence channel and successfully recovered by the pre-trained neural networks. Our study highlights the potential of artificial intelligence for VVB pattern recognition and could have a significant impact on the design of future optical communications systems and information encryption protocols. © 2023 Elsevier GmbH
引用
收藏
相关论文
共 50 条
  • [41] Machine learning-based approach for zircon classification and genesis determination
    Zhu Z.
    Zhou F.
    Wang Y.
    Zhou T.
    Hou Z.
    Qiu K.
    Earth Science Frontiers, 2022, 29 (05) : 464 - 475
  • [42] A machine learning-based classification approach for phase diagram prediction
    Deffrennes, Guillaume
    Terayama, Kei
    Abe, Taichi
    Tamura, Ryo
    MATERIALS & DESIGN, 2022, 215
  • [43] Machine Learning-Based Classification of Apple Sweetness with Multispectral Sensor
    Nhut-Thanh Tran
    Quoc-Thang Phan
    Chanh-Nghiem Nguyen
    Fukuzawa, Masayuki
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 23 - 27
  • [44] Machine Learning-Based Species Classification Methods Using DART-TOF-MS Data for Five Coniferous Wood Species
    Park, Geonha
    Lee, Yun-Gyo
    Yoon, Ye-Seul
    Ahn, Ji-Young
    Lee, Jei-Wan
    Jang, Young-Pyo
    FORESTS, 2022, 13 (10):
  • [45] IoT security: a systematic literature review of feature selection methods for machine learning-based attack classification
    Li, Jing
    Othman, Mohd Shahizan
    Hewan, Chen
    Yusuf, Lizawati Mi
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2025, 17 (1-2) : 60 - 107
  • [46] Classification of Urine Odour Using Machine Learning Methods
    Xing, Yuxin
    Gardner, Julian W.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON OLFACTION AND ELECTRONIC NOSE (ISOEN 2022), 2022,
  • [47] Banana and Guava dataset for machine learning and deep learning-based quality classification
    Kumari, Abiban
    Singh, Jaswinder
    DATA IN BRIEF, 2024, 57
  • [48] Classification of Space Objects Using Machine Learning Methods
    Khalil, Mahmoud
    Fantino, Elena
    Liatsis, Panos
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 93 - 96
  • [49] Prediction of software quality with Machine Learning-Based ensemble methods
    Ceran A.A.
    Ar Y.
    Tanrıöver Ö.Ö.
    Seyrek Ceran S.
    Materials Today: Proceedings, 2023, 81 : 18 - 25
  • [50] Metrics for Characterizing Machine Learning-Based Hotspot Detection Methods
    Wuu, Jen-Yi
    Pikus, Fedor G.
    Marek-Sadowska, Malgorzata
    2011 12TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED), 2011, : 116 - 121