Efficient 3D Brain Tumor Segmentation with Axial-Coronal-Sagittal Embedding

被引:0
作者
Tuan-Luc Huynh [1 ,2 ]
Thanh-Danh Le [1 ,2 ]
Nguyen, Tam V. [3 ]
Trung-Nghia Le [1 ,2 ]
Minh-Triet Tran [1 ,2 ]
机构
[1] Univ Sci VNU HCM, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Univ Dayton, Dayton, OH USA
来源
IMAGE AND VIDEO TECHNOLOGY, PSIVT 2023 | 2024年 / 14403卷
关键词
Brain Tumor Segmentation; ACS Convolutions; Joint Classification and Segmentation;
D O I
10.1007/978-981-97-0376-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the crucial task of brain tumor segmentation in medical imaging and propose innovative approaches to enhance its performance. The current state-of-the-art nnU-Net has shown promising results but suffers from extensive training requirements and underutilization of pre-trained weights. To overcome these limitations, we integrate Axial-Coronal-Sagittal convolutions and pre-trained weights from ImageNet into the nnU-Net framework, resulting in reduced training epochs, reduced trainable parameters, and improved efficiency. Two strategies for transferring 2D pre-trained weights to the 3D domain are presented, ensuring the preservation of learned relationships and feature representations critical for effective information propagation. Furthermore, we explore a joint classification and segmentation model that leverages pre-trained encoders from a brain glioma grade classification proxy task, leading to enhanced segmentation performance, especially for challenging tumor labels. Experimental results demonstrate that our proposed methods in the fast training settings achieve comparable or even outperform the ensemble of cross-validation models, a common practice in the brain tumor segmentation literature.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 25 条
[1]  
Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, 10.48550/arXiv.2107.02314, DOI 10.48550/ARXIV.2107.02314]
[2]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[3]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[4]  
Burgert O., 2022, arXiv, DOI DOI 10.48550/ARXIV.2212.09310
[5]  
Chen SH, 2019, Arxiv, DOI arXiv:1904.00625
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
github, 2023, MIC-DKFZ: nnUNet
[8]   Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images [J].
Hatamizadeh, Ali ;
Nath, Vishwesh ;
Tang, Yucheng ;
Yang, Dong ;
Roth, Holger R. ;
Xu, Daguang .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 :272-284
[9]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778