Zero-mass gauged Schrödinger equations with supercritical exponential growth

被引:5
作者
Shen, Liejun [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Gauged Schrodinger equation; Supercritical exponential growth; Trudinger-Moser inequality; General minimax principle; Elliptic regular result; Variational method; MOSER TYPE INEQUALITY; NONLINEAR SCHRODINGER-EQUATION; UNBOUNDED-DOMAINS; STANDING WAVES; EXISTENCE;
D O I
10.1016/j.jde.2024.02.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the following gauged nonlinear Schr & ouml;dinger equation {-Delta u+(integral(infinity)(|x|)h(u)(s)/su(2)(s)ds+h(u)(2)(|x|)|x|(2))u = f(u)-a|u|(p-2)u, u(x) = u(|x|), where a > 0, p is an element of (1, 2), hu(s) = f(0)(s) r/2u(2)(r)dr and f possesses the supercritical exponential growth in the Trudinger-Moser sense at infinity. Via introducing a new type of Trudinger-Moser inequality in a suitable work space here, we shall exploit the general minimax principle and elliptic regular result to investigate the existence of mountain -pass type solutions for the equation using variational method. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 237
页数:34
相关论文
共 41 条
[1]   An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in RN and Its Applications [J].
Adimurthi ;
Yang, Yunyan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2394-2426
[2]  
Alves C.O., On existence of normalized solutions to a class of elliptic problems with L2-supercritical growth
[3]  
Alves C.O., On a class of strongly indefinite Schrodinger equations with Stein-Weiss convolution parts in R2
[4]   On existence of solutions for some classes of elliptic problems with supercritical exponential growth [J].
Alves, Claudianor Oliveira ;
Shen, Liejun .
MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (02)
[5]  
[Anonymous], 1997, Abstract and Applied Analysis, V2, P301
[6]  
[Anonymous], 1965, Advanced Scientific Research, Mathematics Section (1964)
[7]  
[Anonymous], 1985, Rev. Mat. Iberoamericana, DOI [DOI 10.4171/RMI/6, 10.4171/RMI/6]
[8]   Positive energy static solutions for the Chern-Simons-Schrodinger system under a large-distance fall-off requirement on the gauge potentials [J].
Azzollini, Antonio ;
Pomponio, Alessio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]  
Berestycki H., 1984, C R ACAD PARIS 1, V297, P307