Rational Hodge isometries of hyper-Kahler varieties of K3[n] type are algebraic

被引:2
作者
Markman, Eyal [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
K3; surfaces; hyper-Kahler varieties; hyperholomorphic sheaves; derived categories; Lefschetz standard conjecture; HOLOMORPHIC SYMPLECTIC VARIETIES; COMPACT HYPERKAHLER MANIFOLDS; HILBERT SCHEMES; MODULI SPACES; MONODROMY; COHOMOLOGY; TORELLI; SHEAVES;
D O I
10.1112/S0010437X24007048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X and Y be compact hyper-Kahler manifolds deformation equivalent to the Hilbert scheme of length n subschemes of a K3 surface. A class in H-p,H-p (X x Y, Q) is an analytic correspondence, if it belongs to the subring generated by Chern classes of coherent analytic sheaves. Let f:H-2(X,Q) -> H-2(Y,Q)be a rational Hodge isometry with respect to the Beauville-Bogomolov-Fujiki pairings. We prove that f is induced by an analytic correspondence. We furthermore lift f to an analytic correspondence f: H*(X,Q) [2n] -> H*(Y,Q) [2n], which is a Hodge isometry with respect to the Mukai pairings and which preserves the gradings up to sign. When X and Y are projective, the correspondences f and (f) over tilde are algebraic.
引用
收藏
页码:1261 / 1303
页数:44
相关论文
共 45 条
[1]   New derived symmetries of some hyperkahler varieties [J].
Addington, Nicolas .
ALGEBRAIC GEOMETRY, 2016, 3 (02) :223-260
[2]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755, DOI 10.4310/jdg/1214438181
[3]   Derived categories of hyper-Kahler manifolds: extended Mukai vector and integral structure [J].
Beckmann, Thorsten .
COMPOSITIO MATHEMATICA, 2023, 159 (01) :109-152
[4]   Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties [J].
Boissiere, Samuel ;
Nieper-Wisskirchen, Marc ;
Sarti, Alessandra .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (05) :553-563
[5]   The McKay correspondence as an equivalence of derived categories [J].
Bridgeland, T ;
King, A ;
Reid, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (03) :535-554
[6]   Every rational Hodge isometry between two K3 surfaces is algebraic [J].
Buskin, Nikolay .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 755 :127-150
[7]  
Caldararu A, 2002, INT MATH RES NOTICES, V2002, P1027
[8]  
Caldararu A., 2000, Derived Categories of Twisted Sheaves on Calabi-Yau Manifolds
[9]   The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of K3 surfaces [J].
Charles, Francois ;
Markman, Eyal .
COMPOSITIO MATHEMATICA, 2013, 149 (03) :481-494
[10]  
Gerstein L., 2008, Basic Quadratic Forms, Graduate Studies in Mathematics, V90