Enhancing Knowledge Tracing via Adversarial Training

被引:37
|
作者
Guo, Xiaopeng [1 ]
Huang, Zhijie [1 ]
Gao, Jie [1 ]
Shang, Mingyu [1 ]
Shu, Maojing [1 ]
Sun, Jun [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
来源
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021 | 2021年
基金
中国国家自然科学基金;
关键词
knowledge tracing; adversarial training; knowledge hidden state attention;
D O I
10.1145/3474085.3475554
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the problem of knowledge tracing (KT) where the goal is to trace the students' knowledge mastery over time so as to make predictions on their future performance. Owing to the good representation capacity of deep neural networks (DNNs), recent advances on KT have increasingly concentrated on exploring DNNs to improve the performance of KT. However, we empirically reveal that the DNNs based KT models may run the risk of overfitting, especially on small datasets, leading to limited generalization. In this paper, by leveraging the current advances in adversarial training (AT), we propose an efficient AT based KT method (ATKT) to enhance KT model's generalization and thus push the limit of KT. Specifically, we first construct adversarial perturbations and add them on the original interaction embeddings as adversarial examples. The original and adversarial examples are further used to jointly train the KT model, forcing it is not only to be robust to the adversarial examples, but also to enhance the generalization over the original ones. To better implement AT, we then present an efficient attentive-LSTM model as KT backbone, where the key is a proposed knowledge hidden state attention module that adaptively aggregates information from previous knowledge hidden states while simultaneously highlighting the importance of current knowledge hidden state to make a more accurate prediction. Extensive experiments on four public benchmark datasets demonstrate that our ATKT achieves new state-of-the-art performance. Code is available at: https://github.com/xiaopengguo/ATKT.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 50 条
  • [1] Enhancing Adversarial Robustness via Anomaly-aware Adversarial Training
    Tang, Keke
    Lou, Tianrui
    He, Xu
    Shi, Yawen
    Zhu, Peican
    Gu, Zhaoquan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 328 - 342
  • [2] ENHANCING SEQUENTIAL RECOMMENDATION MODELING VIA ADVERSARIAL TRAINING
    Zhang, Yabin
    Chen, Xu
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,
  • [3] Enhancing Adversarial Training via Reweighting Optimization Trajectory
    Huang, Tianjin
    Liu, Shiwei
    Chen, Tianlong
    Fang, Meng
    Shen, Li
    Menkovski, Vlado
    Yin, Lu
    Pei, Yulong
    Pechenizkiy, Mykola
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 113 - 130
  • [4] Adversarial Bootstrapped Question Representation Learning for Knowledge Tracing
    Sun, Jianwen
    Yu, Fenghua
    Liu, Sannyuya
    Luo, Yawei
    Liang, Ruxia
    Shen, Xiaoxuan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8016 - 8025
  • [5] ELAKT: Enhancing Locality for Attentive Knowledge Tracing
    Pu, Yanjun
    Liu, Fang
    Shi, Rongye
    Yuan, Haitao
    Chen, Ruibo
    Peng, Tianhao
    Wu, Wenjun
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)
  • [6] AFGAKT: Forgetting Law Guided Knowledge Tracking Model by Adversarial Training
    Li, Haonan
    Zhao, Linlin
    Zhang, Zhenguo
    2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE, CCAI 2024, 2024, : 181 - 186
  • [7] ETVKT: Enhanced Training Vector for Knowledge Tracing
    Liu, Dong
    Guo, Lin Tao
    Zhang, Xu Rui
    Li, Yong Bo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 474 - 481
  • [8] Enhancing knowledge tracing with concept map and response disentanglement
    Park, Soonwook
    Lee, Donghoon
    Park, Hogun
    KNOWLEDGE-BASED SYSTEMS, 2024, 302
  • [9] PERM: Pre-training Question Embeddings via Relation Map for Improving Knowledge Tracing
    Wang, Wentao
    Ma, Huifang
    Zhao, Yan
    Yang, Fanyi
    Chang, Liang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 281 - 288
  • [10] Boosting adversarial robustness via self-paced adversarial training
    He, Lirong
    Ai, Qingzhong
    Yang, Xincheng
    Ren, Yazhou
    Wang, Qifan
    Xu, Zenglin
    NEURAL NETWORKS, 2023, 167 : 706 - 714