Liouville-Type Theorems for the 3D Stationary MHD Equations

被引:0
作者
Zhang, Hui [1 ]
Zu, Qian [1 ]
机构
[1] Anqing Normal Univ, Coll Math & Phys, Anqing 246133, Anhui, Peoples R China
关键词
MHD equations; Liouville-type theorems; Caccioppoli type estimate; NAVIER-STOKES EQUATIONS;
D O I
10.1007/s00009-024-02675-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Liouville-type theorems for the 3D stationary incompressible MHD equations. Using the Caccioppoli type estimate, we proved the smooth solutions (u, b) are identically equal to zero when (u,b)is an element of Lp(R3),p is an element of(32,3).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u,b)\in L<^>{p}({\mathbb {R}}<^>{3}),\ p\in (\frac{3}{2},3).$$\end{document} In addition, under an additional assumption in the setting of the Sobolev space of negative order H-center dot-1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}<^>{-1}({\mathbb {R}}<^>{3}),$$\end{document} we can extend the index p is an element of(3,+infinity).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (3,+\infty ).$$\end{document} In fact, our results combine with the result of Yuan and Xiao (J Math Anal Appl 491(2):124343, 2020) that p is an element of[2,92],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [2,\frac{9}{2}],$$\end{document} which implies a very intriguing and novel result for the 3D stationary MHD equations with p is an element of(32,+infinity).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ p\in (\frac{3}{2},+\infty ).$$\end{document}
引用
收藏
页数:14
相关论文
共 17 条
[1]   Anisotropic Liouville type theorem for the stationary Navier-Stokes equations in R3 [J].
Chae, Dongho .
APPLIED MATHEMATICS LETTERS, 2023, 142
[2]  
Chae D, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01701-3
[3]   On Liouville type theorems for the stationary MHD and Hall-MHD systems [J].
Chae, Dongho ;
Wolf, Jorg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :233-248
[4]   Note on the Liouville type problem for the stationary Navier-Stokes equations in R3 [J].
Chae, Dongho .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :1043-1049
[5]   On Liouville type theorems for the steady Navier-Stokes equations in R3 [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) :5541-5560
[6]   Well-posedness for Hall-magnetohydrodynamics [J].
Chae, Dongho ;
Degond, Pierre ;
Liu, Jian-Guo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (03) :555-565
[7]   Liouville-Type Theorems for the Forced Euler Equations and the Navier-Stokes Equations [J].
Chae, Dongho .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (01) :37-48
[8]   Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces [J].
Chamorro, Diego ;
Jarrin, Oscar ;
Lemarie-Rieusset, Pierre-Gilles .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03) :689-710
[9]   The Liouville type theorem for the stationary magnetohydrodynamic equations [J].
Fan, Huiying ;
Wang, Meng .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
[10]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9