Global Tangentially Analytical Solutions of the 3D Axially Symmetric Prandtl Equations

被引:0
作者
Pan, Xinghong [1 ,2 ]
Xu, Chaojiang [1 ,2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab MIIT, Nanjing 211106, Peoples R China
[3] Univ Rouen Normandie, Lab Math Raphael Salem, UMR 6085, CNRS, F-76801 St etienne du rouvray, France
基金
中国国家自然科学基金;
关键词
Global existence; Tangentially analytical solutions; Axially symmetric; Prandtl equations; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; ILL-POSEDNESS; EXISTENCE; REGULARITY; SYSTEM; SPACE;
D O I
10.1007/s11401-024-0029-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors will prove the global existence of solutions to the three dimensional axially symmetric Prandtl boundary layer equations with small initial data, which lies in H1 Sobolev space with respect to the normal variable and is analytical with respect to the tangential variables. The main novelty of this paper relies on careful constructions of a tangentially weighted analytic energy functional and a specially designed good unknown for the reformulated system. The result extends that of Paicu-Zhang in [Paicu, M. and Zhang, P., Global existence and the decay of solutions to the Prandtl system with small analytic data, Arch. Ration. Mech. Anal., 241(1), 2021, 403-446]. from the two dimensional case to the three dimensional axially symmetric case, but the method used here is a direct energy estimates rather than Fourier analysis techniques applied there.
引用
收藏
页码:573 / 596
页数:24
相关论文
共 32 条
  • [1] Non-uniqueness of Leray solutions of the forced Navier-Stokes equations
    Albritton, Dallas
    Brue, Elia
    Colombo, Maria
    [J]. ANNALS OF MATHEMATICS, 2022, 196 (01) : 415 - 455
  • [2] Alexandre R, 2015, J AM MATH SOC, V28, P745
  • [3] Decay and Vanishing of some D-Solutions of the Navier-Stokes Equations
    Carrillo, Bryan
    Pan, Xinghong
    Zhang, Qi S.
    Zhao, Na
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) : 1383 - 1419
  • [4] Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II
    Chen, Chiun-Chuan
    Strain, Robert M.
    Tsai, Tai-Peng
    Yau, Horng-Tzer
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (03) : 203 - 232
  • [5] Well-Posedness of the Prandtl Equations Without Any Structural Assumption
    Dietert, Helge
    Gerard-Varet, David
    [J]. ANNALS OF PDE, 2019, 5 (01)
  • [6] Remarks on the ill-posedness of the Prandtl equation
    Gerard-Varet, D.
    Nguyen, T.
    [J]. ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 71 - 88
  • [7] Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
  • [8] Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
  • [9] A Note on Prandtl Boundary Layers
    Guo, Yan
    Toan Nguyen
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (10) : 1416 - 1438
  • [10] H L., 1985, Grundlehren Math. Wisse., V274