Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle

被引:0
|
作者
Jin, Xishen [1 ]
Liu, Jiawei [2 ]
机构
[1] Renmin Univ China, Dept Math, Beijing 100872, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Xiaolingwei St 200, Nanjing 210094, Peoples R China
关键词
Generalized Lagrangian mean curvature flows; Special Lagrangian submanifold; Stability; SINGULARITIES; MANIFOLDS;
D O I
10.1007/s40818-024-00185-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the stability of the generalized Lagrangian mean curvature flow of graph case in the cotangent bundle, which is first defined by Smoczyk-Tsui-Wang (Smoczyk et al. J f & uuml;r die reine und angewandte Mathematik 750: 97-121, 2019). By new estimates of derivatives along the flow, we weaken the initial condition and remove the positive curvature condition in Smoczyk et al. (J f & uuml;r die reine und angewandte Mathematik 750: 97-121, 2019). More precisely, we prove that if the graph induced by a closed 1-form is a special Lagrangian submanifold in the cotangent bundle of a Riemannian manifold, then the generalized Lagrangian mean curvature flow is stable near it.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Generalized Lagrangian mean curvature flows: The cotangent bundle case
    Smoczyk, Knut
    Tsui, Mao-Pei
    Wang, Mu-Tao
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 750 : 97 - 121
  • [2] Hamiltonian stability for weighted measure and generalized Lagrangian mean curvature flow
    Kajigaya, Toru
    Kunikawa, Keita
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 128 : 140 - 168
  • [3] STABILITY OF LINE BUNDLE MEAN CURVATURE FLOW
    Han, Xiaoli
    Jin, Xishen
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (09) : 6371 - 6395
  • [4] Generalized Lagrangian mean curvature flow in Kahler manifolds that are almost Einstein
    Behrndt, Tapio
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 65 - 79
  • [5] Lagrangian mean curvature flow with boundary
    Christopher G. Evans
    Ben Lambert
    Albert Wood
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [6] Lagrangian mean curvature flow with boundary
    Evans, Christopher G.
    Lambert, Ben
    Wood, Albert
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [7] Minimizing Movements for the Generalized Power Mean Curvature Flow Generalized Power Mean Curvature Flow
    Bellettini, Giovanni
    Kholmatov, Shokhrukh Yu.
    MILAN JOURNAL OF MATHEMATICS, 2024,
  • [8] Lagrangian mean curvature flow of Whitney spheres
    Savas-Halilaj, Andreas
    Smoczyk, Knut
    GEOMETRY & TOPOLOGY, 2019, 23 (02) : 1057 - 1084
  • [9] Longtime existence of the Lagrangian mean curvature flow
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 25 - 46
  • [10] Ancient solutions in Lagrangian mean curvature flow
    Lambert, Ben
    Lotay, Jason D.
    Schulze, Felix
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (03) : 1169 - 1205