Generalization of quantum calculus and corresponding Hermite-Hadamard inequalities

被引:3
作者
Akbar, Saira Bano [1 ]
Abbas, Mujahid [2 ]
Budak, Hueseyin [3 ]
机构
[1] GC Univ Lahore, Abdus Salam Sch Math Sci, Lahore, Pakistan
[2] Univ Johannesburg, Fac Engn & Built Environm, Dept Mech Engn Sci, Doornfontein Campus, Johannesburg, South Africa
[3] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
关键词
(phi-h)-derivative; Jensen inequality; m-convex function; Hermite Hadamard Inequality; (phi-h)-integral<middle dot>Jensen inequality; & hstrok; -convexfunction;
D O I
10.1007/s13324-024-00960-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is first to introduce generalizations of quantum integrals and derivatives which are called (phi-h) integrals and (phi-h) derivatives, respectively. Then we investigate some implicit integral inequalities for (phi-h) integrals. Different classes of convex functions are used to prove these inequalities for symmetric functions. Under certain assumptions, Hermite-Hadamard-type inequalities for q-integrals are deduced. The results presented herein are applicable to convex, m-convex, and & hstrok;-convex functions defined on the non-negative part of the real line.
引用
收藏
页数:20
相关论文
共 26 条
[1]  
Ali MA, 2021, ADV DIFFER EQU-NY, V2021, DOI 10.1186/s13662-020-03163-1
[2]  
Alomari M., 2018, Turk. J. Sci, V3, P32
[3]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[4]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[5]  
Brahim K., 2008, J. Inequal. Pure Appl. Math, V9, P43
[6]   New Quantum Mercer Estimates of Simpson-Newton-like Inequalities via Convexity [J].
Butt, Saad Ihsan ;
Budak, Huseyin ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (09)
[7]   Inequalities for q-h-Integrals via PLANCK CONSTANT OVER TWO PI-Convex and m-Convex Functions [J].
Chen, Dong ;
Anwar, Matloob ;
Farid, Ghulam ;
Bibi, Waseela .
SYMMETRY-BASEL, 2023, 15 (03)
[8]  
Ernst T., 2012, COMPREHENSIVE TREATM
[9]  
Farid G., 2023, Appl. Math. Inf. Sci, V6, P1189
[10]  
Farid G., 2022, OPEN J MATH ANAL, V6, P130