A Novel Variable Stiffness Actuator Based on Cable-Pulley-Driven Mechanisms for Robotics

被引:5
作者
Li, Zhisen [1 ,2 ,3 ]
Xu, Peng [1 ,2 ,3 ]
Li, Bing [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Guangdong Prov Key Lab Intelligent Morphing Mech &, Shenzhen 518052, Peoples R China
[2] Harbin Inst Technol, Key Univ Lab Mech & Machine Theory & Intelligent U, Shenzhen 518052, Peoples R China
[3] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518052, Peoples R China
基金
中国国家自然科学基金;
关键词
Active disturbance rejection control (ADRC); cable-pulley-driven; trajectory tracking; variable stiffness actuator (VSA); MECHANICALLY ADJUSTABLE COMPLIANCE; EQUILIBRIUM POSITION ACTUATOR; SLIDING MODE; DESIGN; JOINT; PROTOTYPE; MACCEPA;
D O I
10.1109/TMECH.2024.3384377
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Variable stiffness actuator (VSA) is an effective actuation approach to increase safety in physical human-robot interaction. This acticle proposes a novel compact variable stiffness actuator (CVSA) that can regulate stiffness by changing the preload of springs using a series of cable-pulley-driven mechanisms. By changing the number of variable stiffness units, the stiffness regulation range of VSA can be customized and reconfigured. To reduce internal friction, the pulleys and steel balls are adopted in the driving system. The driving cable passed through the central-hole of the VSA allows the stiffness-adjusting motor to be placed in a remote location. The stiffness model of the VSA is established, and its design parameters related to stiffness are analyzed. An improved active disturbance rejection controller for the VSA is developed to achieve robust position tracking in the presence of disturbances. An adaptive term is introduced into the controller for online parameter adjustment. The stiffness identification, collision test, and trajectory tracking experiments under different conditions prove the feasibility of the actuator and verify the proposed algorithm.
引用
收藏
页码:4699 / 4710
页数:12
相关论文
共 44 条
[1]  
[Anonymous], 2015, INT J-TORONTO, V42, P371
[2]   Virtual and physical prototyping of a beam-based variable stiffness actuator for safe human-machine interaction [J].
Bilancia, Pietro ;
Berselli, Giovanni ;
Palli, Gianluca .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2020, 65
[3]   A Robot Joint With Variable Stiffness Using Leaf Springs [J].
Choi, Junho ;
Hong, Seonghun ;
Lee, Woosub ;
Kang, Sungchul ;
Kim, Munsang .
IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (02) :229-238
[4]   Variable stiffness structural design of a dual-segment continuum manipulator with independent stiffness and angular position [J].
Gao, Xifeng ;
Li, Xingchen ;
Zhao, Changsheng ;
Hao, Lina ;
Xiang, Chaoqun .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2021, 67 (67)
[5]   The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification [J].
Groothuis, Stefan S. ;
Rusticelli, Giacomo ;
Zucchelli, Andrea ;
Stramigioli, Stefano ;
Carloni, Raffaella .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (02) :589-597
[6]   Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices [J].
Grosu, Victor ;
Rodriguez-Guerrero, Carlos ;
Grosu, Svetlana ;
Vanderborght, Bram ;
Lefeber, Dirk .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (04) :1777-1785
[7]  
HUANG J, 2015, IEEE T AUTOM SCI ENG, V12, P1257, DOI DOI 10.1109/TASE.2015.2466634
[8]   A New Actuator With Adjustable Stiffness Based on a Variable Ratio Lever Mechanism [J].
Jafari, Amir ;
Tsagarakis, Nikos G. ;
Sardellitti, Irene ;
Caldwell, Darwin G. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2014, 19 (01) :55-63
[9]   A Novel Intrinsically Energy Efficient Actuator With Adjustable Stiffness (AwAS) [J].
Jafari, Amir ;
Tsagarakis, Nikos G. ;
Caldwell, Darwin G. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2013, 18 (01) :355-365
[10]   Flexible Actuator With Variable Stiffness and Its Decoupling Control Algorithm: Principle Prototype Design and Experimental Verification [J].
Jin, Hongzhe ;
Yang, Decai ;
Zhang, Hui ;
Liu, Zhangxing ;
Zhao, Jie .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (03) :1279-1291