The virtual element method with interior penalty for the fourth-order singular perturbation problem

被引:3
作者
Zhang, Bei [1 ]
Zhao, Jikun [2 ]
机构
[1] Henan Univ Technol, Sch Sci, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 133卷
基金
中国国家自然科学基金;
关键词
Singular perturbation problem; Singular Virtual element; Interior penalty; Polygonal mesh; NONCONFORMING ELEMENT;
D O I
10.1016/j.cnsns.2024.107964
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the virtual element method with interior penalty to solve a fourth-order singular perturbation problem. In order to estimate the nonconformity error, the degrees of freedom on edges are changed to the moments of functions in the interior penalty scheme. To do this, we design a special H-1-type projection that can be uniquely determined by the new degrees of freedom. With the help of the H-1-type projection, the local discrete space is defined by imposing some restrictions on the local space of H-2-conforming VE, such that it has the local H-2 regularity. Then for the numerical method, we derive the error estimates under the condition of enough smooth solution and the uniform error estimates for cases with boundary layers. Finally, we display some numerical examples. From that, we see that the interior penalty method gives a better performance on the convergence than the theoretical predictions.
引用
收藏
页数:17
相关论文
共 38 条
  • [1] The fully nonconforming virtual element method for biharmonic problems
    Antonietti, P. F.
    Manzini, G.
    Verani, M.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) : 387 - 407
  • [2] Brenner S.C., 2008, MATH THEORY FINITE E, V3
  • [3] C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains
    Brenner, SC
    Sung, LY
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) : 83 - 118
  • [4] Virtual element methods on meshes with small edges or faces
    Brenner, Susanne C.
    Sung, Li-Yeng
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07) : 1291 - 1336
  • [5] A C0 INTERIOR PENALTY METHOD FOR A FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Brenner, Susanne C.
    Neilan, Michael
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 869 - 892
  • [6] C0 PENALTY METHODS FOR THE FULLY NONLINEAR MONGE-AMPERE EQUATION
    Brenner, Susanne C.
    Gudi, Thirupathi
    Neilan, Michael
    Sung, Li-Yeng
    [J]. MATHEMATICS OF COMPUTATION, 2011, 80 (276) : 1979 - 1995
  • [7] Virtual Element Methods for plate bending problems
    Brezzi, Franco
    Marini, L. Donatella
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 455 - 462
  • [8] Hm-CONFORMING VIRTUAL ELEMENTS IN ARBITRARY DIMENSION
    Chen, Chunyu
    Huang, Xuehai
    Wei, Huayi
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (06) : 3099 - 3123
  • [9] UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM
    Chen, Hongru
    Chen, Shaochun
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (06) : 687 - 695
  • [10] NONCONFORMING VIRTUAL ELEMENT METHOD FOR 2mTH ORDER PARTIAL DIFFERENTIAL EQUATIONS IN Rn
    Chen, Long
    Huang, Xuehai
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (324) : 1711 - 1744