Dim and Small Target Detection Method via Gradient Features Guided Local Contrast

被引:1
作者
Shi, Wei [1 ,2 ]
Chen, Mingliang [1 ,2 ]
Zhang, Junchao [1 ,2 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Hunan Prov Key Lab Opt Elect Intelligent Measureme, Changsha 410083, Peoples R China
来源
IEEE JOURNAL ON MINIATURIZATION FOR AIR AND SPACE SYSTEMS | 2024年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
Object detection; Feature extraction; Clutter; Signal to noise ratio; Shape; Noise measurement; Image edge detection; Gradient feature; local contrast; small target detection;
D O I
10.1109/JMASS.2023.3330014
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Small and dim target detection is a longstanding challenge in computer vision because of conditions, such as target scale variations and strong clutter. This article provides an innovative and efficient algorithm for detecting small targets. By utilizing a novel approach, our algorithm achieves superior performance in the presence of challenging environmental conditions, it suppresses the background and enhances the target via gradient features guided local contrast (GFLC). To begin, we leverage the gradient properties of the image to mitigate the background noise. Subsequently, local contrast features are utilized to accentuate the target area in the original image. The fusion map is then computed by combining the above features. Finally, the targets are efficiently extracted from the fusion map via segmentation. The findings indicate that the algorithm we presented achieves outstanding accuracy in detecting targets in images with intricate backgrounds and low contrast, and it effectively suppresses background noise.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 15 条
[1]   A Local Contrast Method for Small Infrared Target Detection [J].
Chen, C. L. Philip ;
Li, Hong ;
Wei, Yantao ;
Xia, Tian ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :574-581
[2]   Infrared Patch-Image Model for Small Target Detection in a Single Image [J].
Gao, Chenqiang ;
Meng, Deyu ;
Yang, Yi ;
Wang, Yongtao ;
Zhou, Xiaofang ;
Hauptmann, Alexander G. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) :4996-5009
[3]   A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window [J].
Han, Jinhui ;
Moradi, Saed ;
Faramarzi, Iman ;
Liu, Chengyin ;
Zhang, Honghui ;
Zhao, Qian .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) :1822-1826
[4]   Infrared Small Target Detection Utilizing the Multiscale Relative Local Contrast Measure [J].
Han, Jinhui ;
Liang, Kun ;
Zhou, Bo ;
Zhu, Xinying ;
Zhao, Jie ;
Zhao, Linlin .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) :612-616
[5]   A Robust Infrared Small Target Detection Algorithm Based on Human Visual System [J].
Han, Jinhui ;
Ma, Yong ;
Zhou, Bo ;
Fan, Fan ;
Liang, Kun ;
Fang, Yu .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) :2168-2172
[6]   Tiny and Dim Infrared Target Detection Based on Weighted Local Contrast [J].
Liu, Jie ;
He, Ziqing ;
Chen, Zuolong ;
Shao, Lei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) :1780-1784
[7]   Fast and robust small infrared target detection using absolute directional mean difference algorithm [J].
Moradi, Saed ;
Moallem, Payman ;
Sabahi, Mohamad Farzan .
SIGNAL PROCESSING, 2020, 177
[8]   Infrared Small Target Detection Based on Double-layer Local Contrast Measure [J].
Pan Sheng-da ;
Zhang Su ;
Zhao Ming ;
An Bo-wen .
ACTA PHOTONICA SINICA, 2020, 49 (01)
[9]   Multiscale patch-based contrast measure for small infrared target detection [J].
Wei, Yantao ;
You, Xinge ;
Li, Hong .
PATTERN RECOGNITION, 2016, 58 :216-226
[10]   Infrared Small Target Detection Based on Multiscale Local Contrast Measure Using Local Energy Factor [J].
Xia, Chaoqun ;
Li, Xiaorun ;
Zhao, Liaoying ;
Shu, Rui .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) :157-161