Global Gevrey-2 solutions of the 3D axially symmetric Prandtl equations

被引:0
作者
Pan, Xinghong [1 ,2 ]
Xu, Chao-Jiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab, MIIT, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; Gevrey-2; solutions; axially symmetric; Prandtl equations; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; INVISCID LIMIT; ILL-POSEDNESS; ANALYTIC SOLUTIONS; EXISTENCE; INSTABILITY; EULER; EXPANSIONS; VISCOSITY;
D O I
10.1142/S0219530524500167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the global existence of small Gevrey-2 solutions to the 3D axially symmetric Prandtl equations. The index 2 is the optimal index for well-posedness result in smooth Gevrey function spaces for data without monotonic assumptions. The novelty of our paper lies in two aspects: one is the tangentially weighted energy construction to match the r weight in the incompressibility and the other is introducing of the new linearly good unknowns to obtain the fast decay of the lower order Gevrey-2 norms of the solutions and auxiliary functions.
引用
收藏
页码:1195 / 1253
页数:59
相关论文
共 45 条
  • [1] Alexandre R, 2015, J AM MATH SOC, V28, P745
  • [3] REMARKS ON THE INVISCID LIMIT FOR THE NAVIER-STOKES EQUATIONS FOR UNIFORMLY BOUNDED VELOCITY FIELDS
    Constantin, Peter
    Elgind, Tarek
    Ignatova, Mihaela
    Vicol, Vlad
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) : 1932 - 1946
  • [4] SEPARATION FOR THE STATIONARY PRANDTL EQUATION
    Dalibard, Anne-Laure
    Masmoudi, Nader
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01): : 187 - 297
  • [5] Well-Posedness of the Prandtl Equations Without Any Structural Assumption
    Dietert, Helge
    Gerard-Varet, David
    [J]. ANNALS OF PDE, 2019, 5 (01)
  • [6] On the zero-viscosity limit of the Navier-Stokes equations in R+3 without analyticity
    Fei, Mingwen
    Tao, Tao
    Zhang, Zhifei
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 112 : 170 - 229
  • [7] Remarks on the ill-posedness of the Prandtl equation
    Gerard-Varet, D.
    Nguyen, T.
    [J]. ASYMPTOTIC ANALYSIS, 2012, 77 (1-2) : 71 - 88
  • [8] Sobolev Stability of Prandtl Expansions for the Steady Navier-Stokes Equations
    Gerard-Varet, David
    Maekawa, Yasunori
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 233 (03) : 1319 - 1382
  • [9] GEVREY STABILITY OF PRANDTL EXPANSIONS FOR 2-DIMENSIONAL NAVIER-STOKES FLOWS
    Gerard-Varet, David
    Maekawa, Yasunori
    Masmoudi, Nader
    [J]. DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) : 2531 - 2631
  • [10] Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273