Torsion points of elliptic curves over multi-quadratic number fields

被引:0
作者
Matsuda, Koji [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
关键词
Elliptic curves; Torsion subgroups; Modular curves;
D O I
10.1016/j.jnt.2024.03.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Mordell-Weil groups of the modular Jacobian varieties of hyperelliptic modular curves X 1 ( M, MN ) over every composite field of some quadratic number fields. Also we prove criteria for the existence of elliptic curves over such number fields with prescribed torsion points generalizing the results for quadratic number fields of Kamienny and Najman. (c) 2024 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:28 / 43
页数:16
相关论文
共 16 条
[1]   EQUATIONS FOR THE MODULAR CURVE X1(N) AND MODELS OF ELLIPTIC CURVES WITH TORSION POINTS [J].
Baaziz, Houria .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2371-2386
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   Ranks of Elliptic Curves with Prescribed Torsion over Number Fields [J].
Bosman, Johan ;
Bruin, Peter ;
Dujella, Andrej ;
Najman, Filip .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (11) :2885-2923
[4]   TORSION SUBGROUPS OF ELLIPTIC CURVES OVER QUINTIC AND SEXTIC NUMBER FIELDS [J].
Derickx, Maarten ;
Sutherland, Andrew V. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) :4233-4245
[5]  
Ishii N., 1991, TSUKUBA J MATH, V15, P413
[6]   On the arithmetic of certain modular curves [J].
Jeon, Daeyeol ;
Kim, Chang Heon .
ACTA ARITHMETICA, 2007, 130 (02) :181-193
[7]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[8]   Torsion groups of elliptic curves over quadratic fields [J].
Kamienny, Sheldon ;
Najman, Filip .
ACTA ARITHMETICA, 2012, 152 (03) :291-305
[9]   TORSION POINTS ON ELLIPTIC-CURVES DEFINED OVER QUADRATIC FIELDS [J].
KENKU, MA ;
MOMOSE, F .
NAGOYA MATHEMATICAL JOURNAL, 1988, 109 :125-149
[10]  
Krumm D., 2013, THESIS U GEORGIA