Machine learning classification based on k-Nearest Neighbors for PolSAR data

被引:2
作者
Ferreira, Jodavid A. [1 ,2 ]
Rodrigues, Anny K. G. [1 ,3 ]
Ospina, Raydonal [1 ,4 ]
Gomez, Luis [5 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, CASTLab, Ave Jornalista Anibal Fernandes,S-N,Cidade Univ, BR-50740540 Recife, PE, Brazil
[2] Univ Fed Paraiba, Dept Estat, Conj Pres Castelo Branco III,S-N,Cidade Univ, BR-58051900 Joao Pessoa, PB, Brazil
[3] Univ Sao Paulo, Dept Estat, IME, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[4] Univ Fed Bahia, Dept Estat, IME, LInCa, Ave Milton St S-N,Cidade Univ, BR-40170110 Salvador, BA, Brazil
[5] Univ Las Palmas Gran Canaria, CTIM Ctr Tecnol Imagen, Edif Informat & Matemat,Lab Invest 2, Las Palmas Gran Canaria 35017, Spain
来源
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS | 2024年 / 96卷 / 01期
关键词
speckle; classification; PolSAR; machine learning; Kullback-Leibler; DIVERGENCE; IMAGERY; VECTOR; MODEL;
D O I
10.1590/0001-3765202420230064
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we focus on obtaining insights of the performances of some well-known machine learning image classification techniques (k -NN, Support Vector Machine, randomized decision tree and one based on stochastic distances) for PolSAR (Polarimetric Synthetic Aperture Radar) imagery. We test the classifiers methods on a set of actual PolSAR data and provide some conclusions. The aim of this work is to show that suitable adapted standard machine learning methods offer excellent performances vs. computational complexity trade-off for PolSAR image classification. In this work, we evaluate well-known machine learning techniques for PolSAR (Polarimetric Synthetic Aperture Radar) image classification, including K -Nearest Neighbors (KNN), Support Vector Machine (SVM), randomized decision tree, and a method based on the Kullback-Leibler stochastic distance. Our experiments with real PolSAR data show that standard machine learning methods, when adapted appropriately, offer a favourable trade-off between performance and computational complexity. The KNN and SVM perform poorly on these data, likely due to their failure to account for the inherent speckle presence and properties of the studied reliefs. Overall, our findings highlight the potential of the Kullback-Leibler stochastic distance method for PolSAR image classification.
引用
收藏
页数:20
相关论文
共 59 条
[1]   Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery [J].
Anfinsen, Stian Normann ;
Doulgeris, Anthony P. ;
Eltoft, Torbjorn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11) :3795-3809
[2]  
[Anonymous], 2019, REMOTE SENS-BASEL, DOI DOI 10.3390/rs11091038
[3]  
[Anonymous], 2023, R: a language and environment for statistical computing
[4]  
BINTI JAAFAR H, 2016, RES DEV SCORED 2016, P1
[5]  
Bishop Christopher M., 2006, Pattern recognition and machine learning
[6]   Multilook Polarimetric SAR Change Detection Using Stochastic Distances Between Matrix-Variate G0d Distributions [J].
Bouhlel, Nizar ;
Meric, Stephane .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10) :6823-6843
[7]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655
[8]  
Campbell C., 2011, Synthesis Lectures on Artificial Intelligence and Machine Learning, V5, P1, DOI 10.2200/S00324ED1V01Y201102AIM010
[9]   Kernel k-nearest neighbor algorithm as a flexible SAR modeling tool [J].
Cao, Dong-Sheng ;
Huang, Jian-Hua ;
Yan, Jun ;
Zhang, Liang-Xiao ;
Hu, Qian-Nan ;
Xu, Qing-Song ;
Liang, Yi-Zeng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 114 :19-23
[10]   PolSAR Image Land Cover Classification Based on Hierarchical Capsule Network [J].
Cheng, Jianda ;
Zhang, Fan ;
Xiang, Deliang ;
Yin, Qiang ;
Zhou, Yongsheng ;
Wang, Wei .
REMOTE SENSING, 2021, 13 (16)