Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling

被引:1
作者
Zhang, Ruibo [1 ]
Nolte, Daniel [1 ]
Sanchez-Villalobos, Cesar [1 ]
Ghosh, Souparno [2 ]
Pal, Ranadip [1 ]
机构
[1] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[2] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
PREDICTION; CLASSIFICATION; VISUALIZATION; GRAPHS;
D O I
10.1038/s41467-024-49372-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space. Quantitative structure-activity relationships (QSAR) models are widely used in drug discovery, but have limitations in their interpretability and accuracy near activity cliffs. Here the authors use a topological regression framework to increase QSAR interpretability and efficiency.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach [J].
Helguera, A. M. ;
Perez-Machado, G. ;
Cordeiro, M. N. D. S. ;
Combes, R. D. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2010, 21 (3-4) :277-304
[42]   Quantitative structure-activity relationship and molecular docking studies on designing inhibitors of the perforin [J].
Song, Fucheng ;
Cui, Lianhua ;
Piao, Jinmei ;
Liang, Hui ;
Si, Hongzong ;
Duan, Yunbo ;
Zhai, Honglin .
CHEMICAL BIOLOGY & DRUG DESIGN, 2017, 90 (04) :535-544
[43]   Quantitative structure-activity relationship to predict acute fish toxicity of organic solvents [J].
Levet, A. ;
Bordes, C. ;
Clement, Y. ;
Mignon, P. ;
Chermette, H. ;
Marote, P. ;
Cren-Olive, C. ;
Lanteri, P. .
CHEMOSPHERE, 2013, 93 (06) :1094-1103
[44]   Investigations on Inhibitors of Hedgehog Signal Pathway: A Quantitative Structure-Activity Relationship Study [J].
Zhu, Ruixin ;
Liu, Qi ;
Tang, Jian ;
Li, Huiliang ;
Cao, Zhiwei .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2011, 12 (05) :3018-3033
[45]   A quantitative structure-activity relationship study of the skin-irritant effect of thietanes [J].
Dinaki, Issa Kakoie ;
Zarrineh, Morteza .
MONATSHEFTE FUR CHEMIE, 2010, 141 (12) :1321-1328
[46]   A quantitative structure-activity relationship approach for assessing toxicity of mixture of organic compounds [J].
Chang, C. M. ;
Ou, Y. H. ;
Liu, T. -C. ;
Lu, S. -Y. ;
Wang, M. -K. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2016, 27 (06) :441-453
[47]   In silico toxicity evaluation of dioxins using structure-activity relationship (SAR) and two-dimensional quantitative structure-activity relationship (2D-QSAR) [J].
Yang, Hong ;
Du, Zhe ;
Lv, Wen-Juan ;
Zhang, Xiao-Yun ;
Zhai, Hong-Lin .
ARCHIVES OF TOXICOLOGY, 2019, 93 (11) :3207-3218
[48]   Quantitative structure-activity relationship modeling of insect juvenile hormone activity of 2,4-dienoates using computed molecular descriptors [J].
Basak, SC ;
Natarajan, R ;
Mills, D ;
Hawkins, DM ;
Kraker, JJ .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2005, 16 (06) :581-606
[49]   Boosting in block variable subspaces: An approach of additive modeling for structure-activity relationship [J].
Xu, Qing-Song ;
Xu, Jian ;
Cao, Dong-Sheng ;
Liang, Yi-Zeng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 152 :134-139
[50]   A quantitative structure-activity relationship study on histamine receptor antagonists using the genetic algorithm-multi-parameter linear regression method [J].
Adimi, Maryam ;
Salimi, Mahmoud ;
Nekoei, Mehdi ;
Pourbasheer, Eslam ;
Beheshti, Abolgha Sem .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2012, 77 (05) :639-650