Crucial role of charge transporting layers on ion migration in perovskite solar cells

被引:0
作者
Abudulimu A. [1 ,4 ]
Liu L. [2 ]
Liu G. [3 ]
Aimaiti N. [4 ]
Rezek B. [1 ]
Chen Q. [2 ]
机构
[1] Faculty of Electrical Engineering, Czech Technical University, Prague
[2] School of Materials and Engineering, Beijing Institute of Technology, Beijing
[3] School of Science, Jiangnan University, Wuxi, 214122, Jiangsu
[4] IMDEA Nanociencia, Madrid
来源
Journal of Energy Chemistry | 2020年 / 47卷
关键词
Charge transporting material; Ion migration; KPFM; Perovskite solar cells;
D O I
10.1016/j.jechem.2019.12.002
中图分类号
学科分类号
摘要
The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovskite with large contribution from grain boundaries are the most common interpretations for the hysteresis. Yet, the high performing devices often include intermediate hole and electron transporting layers, which can further complicate the dynamical process in the device. Here, by using Kelvin Probe Force Microscopy and Confocal Photoluminescence Microscopy, we elucidate the impact of charge-transporting layers and excess MAI on the spatial and temporal variations of the photovoltage on the MAPbI3-based solar cells. By studying the devices layer by layer, we found that the light-induced ion migration occurs predominantly in the presence of an imbalanced charge extraction in the solar cells, and the charge transporting layers play crucial role in suppressing it. Careful selection and processing of the electron and hole-transporting materials are thus essential for making perovskite solar cells free from the ion migration effect. © 2019
引用
收藏
页码:132 / 137
页数:5
相关论文
共 23 条
[1]  
Ponseca C.S., Tian Y., Sundstrom V., Scheblykin I.G., Nanotechnology, 27, (2016)
[2]  
Seok S.I., Gratzel M., Park N.G., Small, 14, (2018)
[3]  
Snaith H.J., Abate A., Ball J.M., Eperon G.E., Leijtens T., Noel N.K., Stranks S.D., Jacob T.W.W., Konrad W., Zhang W., J. Phys. Chem. Lett., 5, pp. 1511-1515, (2014)
[4]  
Unger E.L., Hoke E.T., Bailie C.D., Nguyen W.H., Bowring A.R., Heumuller T., Christoforo M.G., McGehee M.D., Energy Environ. Sci., 7, pp. 3690-3698, (2014)
[5]  
Richardson G., O'Kane S.E., Niemann R.G., Peltola T.A., Foster J.M., Cameron P.J., Walker A.B., Energy Environ. Sci., 9, pp. 1476-1485, (2016)
[6]  
Lin Y., Chen B., Fang Y., Zhao J., Bao C., Yu Z., Deng Y., Rudd P.N., Yan Y., Yuan Y., Huang J., Nat. Commun., 9, (2018)
[7]  
Shao Y., Fang Y., Li T., Wang Q., Dong Q., Deng Y., Yuan Y., Wei H., Wang M., Gruverman A., Shield J., Energy Environ. Sci., 9, pp. 1752-1759, (2016)
[8]  
Calado P., Telford A.M., Bryant D., Li X., Nelson J., O'Regan B.C., Barnes P.R., Nat. Commun., 7, (2016)
[9]  
Weber S.A., Hermes I.M., Turren-Cruz S.H., Gort C., Bergmann V.W., Gilson L., Hagfeldt A., Graetzel M., Tress W., Berger R., Energy Environ. Sci., 11, pp. 2404-2413, (2018)
[10]  
Boyd C.C., Cheacharoen R., Leijtens T., McGehee M.D., Chem. Rev., 119, pp. 3418-3451, (2018)