Optimal design of a local renewable electricity supply system for power-intensive production processes with demand response

被引:6
作者
Germscheid, Sonja H. M. [1 ,2 ]
Nilges, Benedikt [3 ]
von der Assen, Niklas [3 ,4 ]
Mitsos, Alexander [1 ,4 ,5 ]
Dahmen, Manuel [1 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Energy & Climate Res Energy Syst Engn IEK 10, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[3] Rhein Westfal TH Aachen, Inst Tech Thermodynam LTT, D-52062 Aachen, Germany
[4] JARA ENERGY, D-52056 Aachen, Germany
[5] Rhein Westfal TH Aachen, Proc Syst Engn AVTSVT, D-52074 Aachen, Germany
关键词
Integrated design and scheduling; Stochastic programming; Demand response; Local electricity supply system; Renewable energy; STOCHASTIC OPTIMIZATION; ENERGY; UNCERTAINTY; GENERATION; PRICES; MARKET; MODEL;
D O I
10.1016/j.compchemeng.2024.108656
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work studies synergies arising from combining industrial demand response and local renewable electricity supply. To this end, we optimize the design of a local electricity generation and storage system with an integrated demand response scheduling of a continuous power -intensive production process in a multi -stage problem. We optimize both total annualized cost and global warming impact and consider local photovoltaic and wind electricity generation, an electric battery, and electricity trading on day -ahead and intraday market. We find that installing a battery can reduce emissions and enable large trading volumes on the electricity markets, but significantly increases cost. Economically and ecologically -optimal operation of the process and battery are driven primarily by the electricity price and grid emission factor, respectively, rather than locally generated electricity. A parameter study reveals that cost savings from the local system and flexibilizing the process behave almost additively.
引用
收藏
页数:12
相关论文
共 63 条
[1]   Optimal scheduling for wind-powered ammonia generation: Effects of key design parameters [J].
Allman, Andrew ;
Daoutidis, Prodromos .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 131 :5-15
[2]   A non-uniform grid approach for scheduling considering electricity load tracking and future load prediction [J].
Ave, Giancarlo Dalle ;
Harjunkoski, Iiro ;
Engell, Sebastian .
COMPUTERS & CHEMICAL ENGINEERING, 2019, 129
[3]   Typical Periods for Two-Stage Synthesis by Time-Series Aggregation with Bounded Error in Objective Function [J].
Bahl, Bjoern ;
Soehler, Theo ;
Hennenand, Maike ;
Bardow, Andre .
FRONTIERS IN ENERGY RESEARCH, 2018, 5
[4]   Time-series aggregation for synthesis problems by bounding error in the objective function [J].
Bahl, Bjoern ;
Kuempel, Alexander ;
Seele, Hagen ;
Lampe, Matthias ;
Bardow, Andre .
ENERGY, 2017, 135 :900-912
[5]   Design of low-carbon utility systems: Exploiting time-dependent grid emissions for climate-friendly demand-side management [J].
Baumgaertner, Nils ;
Delorme, Roman ;
Hennen, Maike ;
Bardow, Andre .
APPLIED ENERGY, 2019, 247 :755-765
[6]  
Birge JR, 2011, SPRINGER SER OPER RE, P3, DOI 10.1007/978-1-4614-0237-4
[7]   Demand side management and operational mode switching in chlorine production [J].
Bree, Luisa C. ;
Perrey, Karen ;
Bulan, Andreas ;
Mitsos, Alexander .
AICHE JOURNAL, 2019, 65 (07)
[8]  
Broverman S.A., 2010, MATH INVESTMENT CRED
[9]  
Bundesministerium der Justiz der Bundesrepublik Deutschland, 2022, Stromnetzentgeltverordnung vom 25. Juli 2005 (BGBl. I S. 2225), die zuletzt durch artikel 6 des gesetzes vom 20. Juli 2022 (BGBl. I S. 1237) geandert worden ist
[10]  
Bundesnetzagentur|smard.de, 2023, SMARD strommarktdaten.