AN INEXACT RELAXED GENERALIZED NEWTON ITERATIVE METHOD FOR SOLVING GENERALIZED ABSOLUTE VALUE EQUATIONS

被引:0
作者
Yu, Dongmei [1 ]
Zhang, Yiming [2 ,3 ]
Yuan, Yifei [4 ]
机构
[1] Liaoning Tech Univ, Coll Sci Inst Optimizat & Decis Analyt, Sch Business Adm, Fuxin 123000, Peoples R China
[2] Liaoning Tech Univ, Sch Business Adm, Huludao 125105, Peoples R China
[3] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxin 123000, Peoples R China
[4] Liaoning Tech Univ, Inst Optimizat & Decis Anal, Coll Sci, Fuxin 123000, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2024年 / 20卷 / 01期
基金
中国国家自然科学基金;
关键词
generalized absolute value equations; generalized Newton method; relaxed; inexact; convergence; LINEAR COMPLEMENTARITY; VERTICAL-BAR; ALGORITHM; MODEL;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, for solving the generalized absolute value equations (GAVE), an inexact relaxed generalized Newton (IRGN) iterative method is developed, which can adopt a relative error tolerance. Linear convergence of the IRGN iterative method is established under suitable conditions, and theoretical analysis of the inexact schemes support the efficient computational implementations of the exact schemes. It has been found that the IRGN iterative method involves the classical generalized Newton (GN) iterative method as a special case. Some numerical results are given to demonstrate the viability and robustness of the proposed methods.
引用
收藏
页码:23 / 44
页数:22
相关论文
共 50 条
  • [21] An efficient Newton-type matrix splitting algorithm for solving generalized absolute value equations with application to ridge regression problems
    Li, Xuehua
    Chen, Cairong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [22] Modified HS conjugate gradient method for solving generalized absolute value equations
    Ya Li
    Shouqiang Du
    [J]. Journal of Inequalities and Applications, 2019
  • [23] Modified HS conjugate gradient method for solving generalized absolute value equations
    Li, Ya
    Du, Shouqiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [24] Generalized equations and the generalized Newton method
    Uko, LU
    [J]. MATHEMATICAL PROGRAMMING, 1996, 73 (03) : 251 - 268
  • [25] A New Iterative Method for Solving Absolute Value Equations
    Jing, Li
    Fei, Qin
    Jie, Liu
    Bin, Zhou
    [J]. PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 555 - 556
  • [26] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    [J]. Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [27] Iterative methods for solving absolute value equations
    Ali, Rashid
    Ali, Asad
    Iqbal, Shahid
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 26 (04): : 322 - 329
  • [28] ON GENERALIZED ABSOLUTE VALUE EQUATIONS
    Noor, M. A.
    Noor, K. I.
    Batool, S.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 63 - 70
  • [29] An Improved Convergence Theorem of the Newton-Based AOR Method for Generalized Absolute Value Equations
    Chen, Raojie
    Peng, Xiaofei
    Yu, Wensong
    [J]. SYMMETRY-BASEL, 2022, 14 (06):
  • [30] A Two-Step Matrix-Splitting Iterative Method for Solving the Generalized Absolute Value Equation
    Zheng, Lin
    Tang, Yangxin
    [J]. JOURNAL OF MATHEMATICS, 2024, 2024